

Implementing a structured BR approach - A company perspective

Rebecca Sudlow & George Quartey

Acknowledgements

- George Quartey (Stats Methodology and Research Group)
- Jamie Cross (Regulatory)
- Barbara Tong (Stats Methodology and Research Group)

Presentation Outline

- What were the opportunities/areas for improvement in BR assessment?
- Challenges to embed a new way of thinking/working
- Which approach/method is appropriate?
- How to incorporate CBR thinking into the Roche development process?
- Experiences so far
- Barriers to implementation / Increasing chances of success

Opportunities for improvement

Table 1 Percentage of Patients with an ACR20, ACR50, and ACR70 Response at Week 24: DMARD-Inadequate Responders: 6-Month Pooled Data (ITT Population)				
Parameter	Placebo + DMARD	TCZ 4 mg/kg + MTX	TCZ 8 mg/kg + MTX	
	(N=1010)	(N=612)	(N=1406)	
ACR20	25.8%	49.7%	59.2%	
ACR50	9.6%	27.3%	37.0%	
ACR70	2.4%	11.4%	18.5%	

All tocilizumab treatment groups were statistically superior to placebo at p < 0.0001

Tocilizumab 8 mg/kg was statistically superior to 4 mg/kg at p < 0.05

Table 2...

Table 28 ²⁷ ··· Serious Adverse Events Reported by ≥ 2 Patients Receiving Tocilizumab in the Double-Blind Studies					
	TCZ 8 mg/kg N = 288	MTX N = 284	TCZ 4 mg/kg + DMARD N = 774	TCZ 8 mg/kg + DMARD N = 1582	Placebo + DMARD N = 1170
Preferred term	N (%)	N (%)	N (%)	N (%)	N (%)
Infections					
Pneumonia	2 (0.7)	2 (0.7)	6 (0.8)	9 (0.6)	4 (0.3)
Cellulitis	-	-	-	9 (0.6)	1 (0.1)
Herpes Zoster	-	-	-	5 (0.3)	- '
Urinary tract infection	-	-	1 (0.1)	1 (0.1)	4 (0.3)
Sepsis	-	1 (0.3)	2 (0.3)	1 (0.1)	1 (0.1)
Gastroenteritis	-	-	3 (0.4)	- 1	- 1
Bronchitis	-	-	1 (0.1)	1 (0.1)	1(0.1)
Gastrointestinal					
Diverticular perforation	-	-	-	2 (0.2)	-
Gastric Ulcer	1 (0.3)	-	-	1 (0.1)	-
Esophagitis	- 1	-	1 (0.1)	1 (0.1)	-
Cardiac			, · ·		
Acute coronary	-	-	-	2 (0.1)	3 (0.3)

Impetus for changing cBR: ex- Actemra briefing document, FDA Adv. Comm. (29-Jul-2008)

BR Statement (2008)

"In summary, the benefits of tocilizumab therapy in earlier stage RA and inadequate responders to DMARDs and to anti-TNF agents has been demonstrated.

"The overall benefit/risk assessment of tocilizumab in patients with RA is favorable. Tocilizumab provides a new therapeutic option for patients..."

Opportunities for improvement in BR assessment

- Integrated rather than separate presentation of key efficacy and safety data.
- Display of comparative effects
- Translation of observed treatment effects into clinical terms?
- Clear rationale behind why observed efficacy offsets harms

Internal drivers...

Feeling that B-R assessments seemed to be somewhat inadequate

Evaluate B-R profile to enable *decision making* at key points during product development

Facilitate an understanding of the *clinical value* of a specific molecule

External drivers...

31 August 2011 EMA/718294/2011 Human Medicines Development and Evaluation

Benefit-risk methodology project

Work package 3 report: Field tests

April 2012 EMA/CHMP/ICH/544553/1998 Committee for medicinal products for human use (CHMP)

ICH guideline E2C (R2)
Periodic benefit-risk evaluation report (PBRER)

FDA B-R Assessment: Jakafi approval

Benefit-Risk Assessment Framework

Decision Factor	Evidence and Uncertainties	Conclusions and Reasons
Analysis of Condition: MF		MF is a serious, life-
Clinical Manifestations	Splenomegaly and symptoms	threatening condition in
	which disrupt quality of life	which death is due to
Median Survival (all groups)	57 months	evolution into AML (12%),
Survival high risk	27 months	bleeding (11%), portal
Survival intermediate-2	48 months	hypertension (7%), and liver
Approved available therapy	No approved therapy	insufficiency (9%).
Unmet Medical Need:	Allograft is the only curative	For most patients, there is no
Therapy: Off label use of	therapy (7-year survival is	curative therapy, and no
interferon-alpha, anagrelide,	60%). Only a fraction of	effective treatment which
dexamethasone, hydroxyurea,	patients with MF are eligible.	reduces symptoms and
erythropoietin, thalidomide,	All other therapies are	splenomegaly for a long time.
splenic radiation, and	palliative and have significant	There is an unmet medical
allografts.	side effects.	need in MF.
Clinical Benefit:	42% and 29% of ruxolitinib	Two large well controlled and
2 randomized, well controlled	treated patients in the two	well designed trials met
trials were conducted with	trials displayed ≥35%	efficacy endpoints when
reproducible results.	reduction of splenic volume.	measured at 24 and 48 weeks
	In the pivotal phase III trial,	of therapy. Uncertain is the
	46% of patients experienced	how long benefits will last
	≥50% reduction in total	beyond the 24 and 48 weeks
	symptom score. Long term	and what will be the toxicity
	benefit and toxicity unknown.	of long-term treatment.
Risks:	Ruxolitinib Arms	Thrombocytopenia was
Early deaths (≤28 days)	Not increased	successfully managed by a
SAEs	Not increased	dose adjustment schedule.
AEs		Anemia was managed by
↓platelets (Grade 3)	Increased	RBC transfusions. The risks
↓platelets (no Grade 4)	Not increased	of long term therapy have not
Bleeding	Not increased	been characterized.

Anemia (Grade 3)	Increased	
Anemia (Grade 4)	Increased	
Infections	Not increased	
AEs leading to discontinuation	Not increased	
AEs leading to dose reduction	Increased	
Risk Management:	Two phase III trials showed	PMR for follow-up (for 3
	significant benefit and	years after randomization) of
Need of studies for toxicity of	minimal risks for up to 48	phase III trial populations for
long-term therapy.	weeks of treatment.	myelosuppression
	Need PMC for longer term	
	follow-up of response	PMC for post-marketing
	duration and toxicity.	follow-up of efficacy and
		safety outcomes of current
		randomized trials and to
		report on discontinuation of at
		least 150 patients previously
		entered onto the randomized
		trials to determine if specific
		cautions are appropriate to
		describe discontinuation
		strategies.

6

Challenges to embed a new way of thinking/working

- Like steering an oil tanker
- Complexity of organisation
 - Many functions
 - Many sites around the world
 - Disease area silos
- Too much choice in methods
- Change fatigue (post merger)

Champion needed

Key Partnerships within the company Roche **Development Clinical Science Teams Commercial Biometrics** Governance **Medical Affairs Safety** Regulatory **Committees**

I) Which approach/method is appropriate?

Wanted an approach that:

- is systematic, descriptive and incorporates quantitative models as needed
- provides the outcome in an easily understandable format such as charts, plots (data visualisation)
- is flexible and adaptable to different situations
- is able to use all available data (pre- and post-market)
- has clear data collection methods
- incorporates stakeholder perspectives (patient, physician)
- accounts for uncertainties in B-R estimates

II) Which approach/method is appropriate?

- Decision to focus on a subset of tools and methodologies
- Toolkit developed focusing on
 - a descriptive framework for conducting a CBR assessment
 - 3 potentially useful quantitative methods that complement the framework
- Decision to focus on CBR assessment at time of filing
- Process / methodology toolkit updated to incorporate PBRER requirements

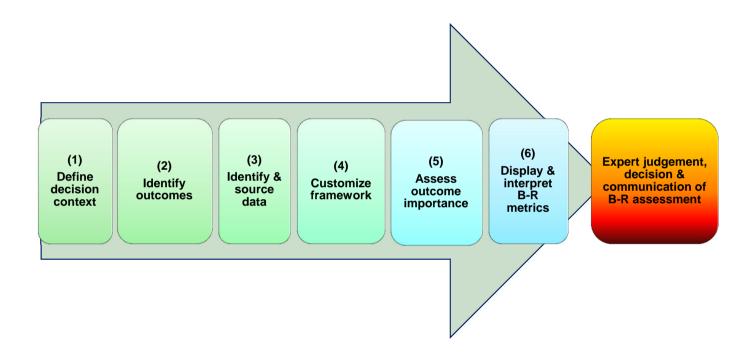
III) Which approach/method is appropriate?

Frameworks selected by Roche:

- BRAT
- Proact-url
- FDA Benefit Risk Framework

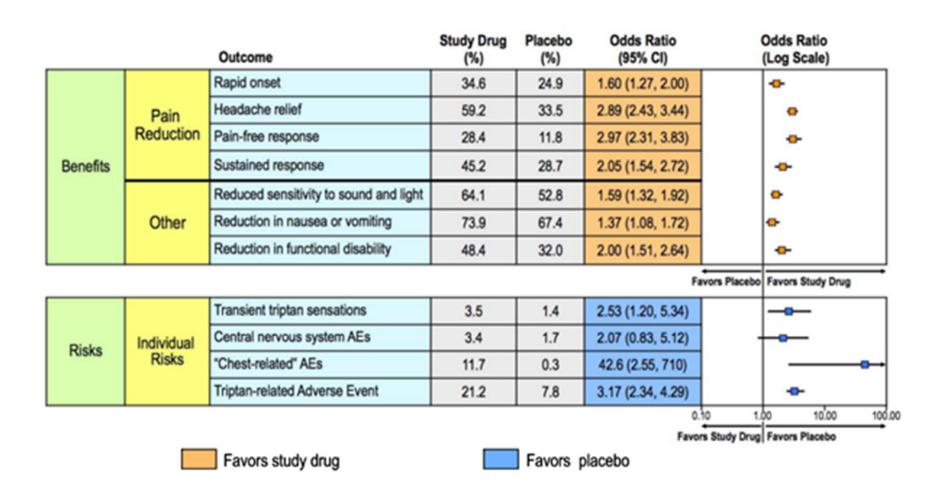
Additional quantitative methods to complement the framework were:

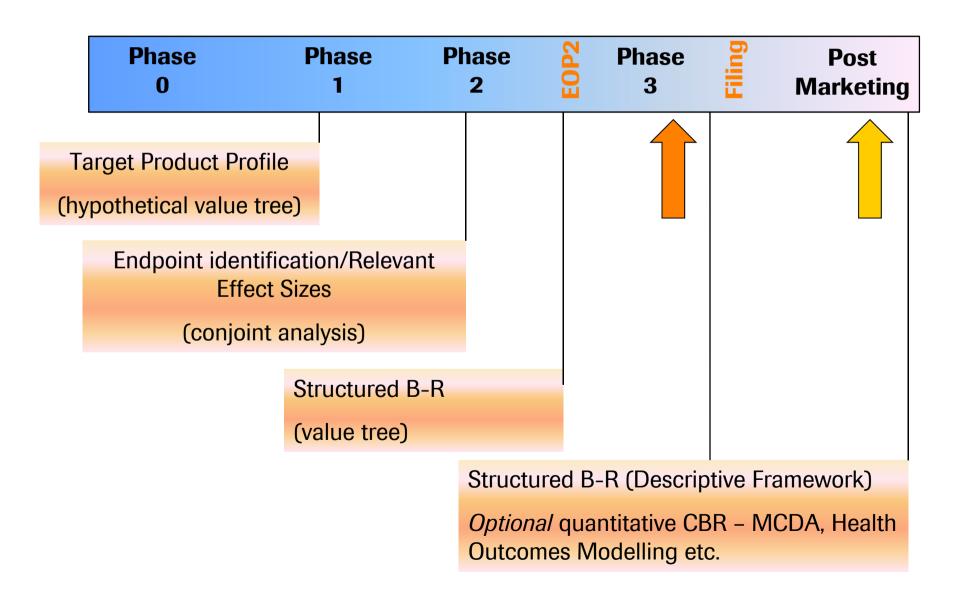
- MCDA
- Q-TWIST
- Conjoint Analysis


BRAT framework for descriptive assessment

Built on a number of principles

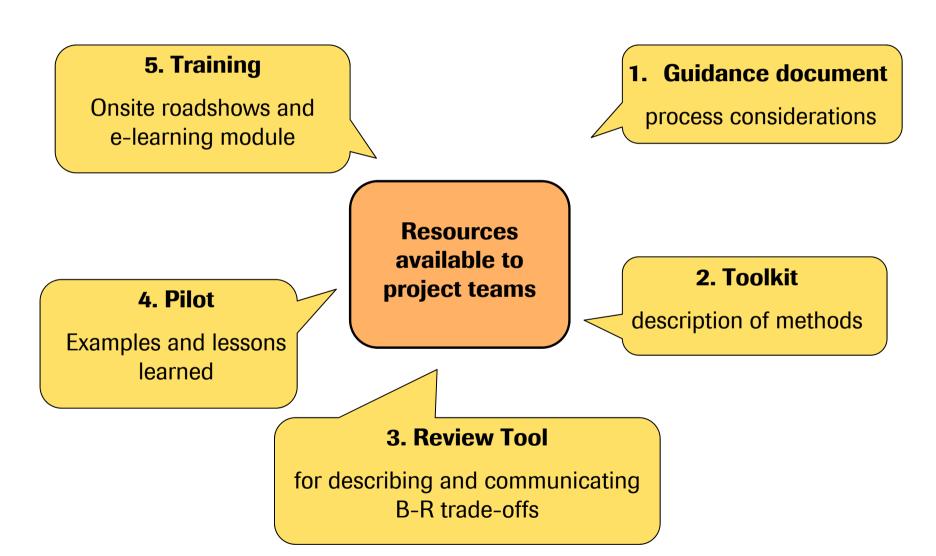
- Transparency systematically document what is included and what is excluded. Consistency of approach across project teams.
- **Documentation of reasoning** behind electing to leave out a particular set of benefit or risk outcomes in an assessment
- Tabular output of parameters and results are easily interpretable by readers
- Visualisation of data





Example product of a BRAT framework approach

When can we incorporate structured B-R info development?


Who does the assessment?

- The Project Team Leader is accountable for carrying out the necessary activities within the team
- Teams are required to:
 - > Develop a strategy for describing the B-R profile
 - > Create a plan for assessing the B-R profile
 - Document the B-R assessment rationale, outcome, etc.
- Clinical Science Leader organizes and leads the B-R sub-team:
 - Safety Scientist
 - Regulatory
 - Biostatistician

Experiences so far

Methodology	Situation
BRAT framework	sNDA – presented in the clinical overview, based on pooled data PBRER – individual studies presented (1 per indication)
"value tree" from BRAT + FDA Grid	PBRER in a mature product (mix of clinical trial data and post marketing safety data)
PrOACT-URL	PBRER in a mature product
Conjoint Analysis	New disease area with no defined regulatory pathway What endpoints are important to the patient? What endpoints are important to the physician
MCDA	Internal pilots only

...implementing a structured B-R is easier said than done ...

Reluctance to change ("not in my backyard")

Lack of alignment / buy-in across agencies and stakeholders

Lack of expertise to implement concept

Lack of resources to implement models

No consensus about the scope of the applicability of frameworks

Successful implementation of a structured B-R assessment framework requires....

- Awareness of barriers for change and possible solutions
- Effective change management through awareness of need for framework
- Support from senior management
- Availability of talent / expertise to execute framework
- Consensus on the best approach
- Use of pilots with Roche data / first hand experience
- Training of staff
- Time

How have other companies done this?

• Are there any lessons that we can all learn from your experiences?

Doing now what patients need next