

A longitudinal tumor growth inhibition model for low-grade glioma

Benjamin Ribba

European Statistical meeting - BASEL

13 SEP 2012

Introduction

- Rate of successful development in oncology: 5%
- For compounds entering phase III: only 40%
- FDA recommends the use of quantitative methods for leveraging knowledge from clinical data
- <u>Objective</u>: to be able to predict long-term clinical outcome from early clinical evaluation
- <u>Means</u>: through modeling time-course of tumor shrinkage (tumor-growth inhibition model)

Existing models / relevance

- Wang et al. CPT 2009 for NSCLC
 - Link time of death to change in tumor size observed 8 weeks after therapy starts, thus providing a method for early screening of candidate drugs
- Claret el al. JCO 2010 for CRC
 - Predict survival in phase III trial based on the modeling of tumor size dynamic in phase II

Low grade gliomas

- WHO grade II gliomas (LGG) are diffusely infiltrative brain tumors affecting young adults
- Tumor grows slowly: I-2 mm/year (≈10 times less than high grade gliomas)
- Patients mainly asymptomatic for years
- Tumor size is monitored with periodic MRIs
- Treatment starts when tumor size gets too high

Treatments

- None of them is curative
- Surgery, radiotherapy and chemotherapy (Temodal®, and PCV)
- PCV chemotherapy induce prolonged response:
 - Tumor size can decrease in patients for a prolonged period (> 2 years) after treatment stops
- Could the characterization of this prolonged response help to suggest improvements of the therapeutic protocol?

Data description

- Tumor size from 21 patients
- PCV treatment protocol : a maximum of 6 cycles (high toxicity) with a 6-weeks interval
 - Procarbazine (alkylating agent phase nonspecific): 60 mg/m2 on days 8-21
 - Lomustine (alkylating agent phase nonspecific): 110
 mg/m2 on day 1
 - Vincristine (S-phase specific) : I.4 mg/m2, maximum
 2mg/m2 on day 8 and 29

Tumor size measurements

- Printed images were available
- Tumor volumes were estimated manually using three diameters (DI×D2×D3/2)
- Tumor volume were converted into a mean tumor diameter MTD $(2 \times V^{1/3})$
- Conventional method to assess LGG growth dynamic

21 low-grade glioma patients treated with PCV chemotherapy (Procarbazine, CCNU, Vincristine)

Time 0 corresponds to the time of treatment

Time (months)

Time 0 corresponds to the time of treatment

Underlying hypothesis

- LGG is composed by proliferative and quiescent cell tissues
- Cytotoxics induce direct kill of proliferating cells
- Quiescent cells that have sustained DNA damages due to treatment subsequently die when re-entering the cell cycle

Modeling treatment

- Treatment is represented as a whole by a unique variable (C), virtual drug concentration encompassing the three agents
- We assume this concentration to exponentially decay through the parameter KDE that we estimate
- At the time of treatments (t = Ttreat), we set C = I (arbitrary unit)

Mathematical equations

$$\begin{aligned} \frac{dC}{dt} &= -KDE \times C \\ \frac{dP}{dt} &= \lambda_P \times P\left(1 - \frac{P^*}{K}\right) + k_{Q_P P} \times Q_P - k_{PQ} \times P - \gamma_P \times C \times P \\ \frac{dQ}{dt} &= k_{PQ} P - \gamma_Q \times C \times Q \\ \frac{dQ_P}{dt} &= \gamma_Q \times C \times Q - k_{Q_P P} Q_P - \delta_{Q_P} \times Q_P \\ P^* &= P + Q + Q_P \end{aligned}$$

Parameters

- System of 4 compartments written as ordinary differential equations
- 6 parameters and 2 initial conditions (P₀ and Q₀)
- λ_P (growth rate) and k_{PQ} (quiescence rate) only regulates tumor growth in the absence of treatment

Statistical framework

- The model was developed within a mixed-effect (population) context where structural parameters are associated with inter-individual variability
 - 8 fixed parameters and 7 inter-individual variability parameters
- The software Monolix was used to estimate parameters

Parameter estimates PCV

Parameter (unit)	Description	Mean value (SE%)	IIV (SE%)
P₀ (mm)	Baseline on P	7.13 (25)	94% (23)
Q₀ (mm)	Baseline on Q	41.2 (7)	54% (10)
λ_P (month ⁻¹)	Growth rate	0.121 (16)	72% (9)
k _{PQ} (month ⁻¹)	Quiescence rate	0.030 (21)	76% (12)
k _{QPP} (month ⁻¹)	Feedback to proliferation	0.003 (35)	97% (31)
δ_{Q^*} (month ⁻¹)	Elimination rate	0.009 (21)	75% (12)
Y	Treatment efficacy	0.729 (37)	115% (9)
KDE (month ⁻¹)	Drug elimination rate	0.240 (33)	70% (-)

Staining MIB-I 70 antibody for Ki-67 60 0 50 · **MIB1 INDEX** 40 30 I 0 20 8 10 0 10 45 176 24 19 N= 41 Positive staining nuclei Anaplastic A. Oligod. + OA Astrocytoma

Anaplastic O.

AG

GBM

	Observed (n=24)	Predicted (n=21)	
Oligodendrogliomas	15% (SD=10%)	14% (SD=10%)	

Additional datasets

- Radiotherapy (n=25 patients) Salpêtrière hospital
- Temozolomide (TMZ) chemotherapy: (n=24 patients randomly selected) - Salpêtrière hospital

Parameter consistency

Parameter (unit)	PCV	RT	TMZ
Tumor baseline	48.3 mm	44.2 mm	43.2 mm
Basic doubling time for the proliferative tissue	8.3 months	7.3 months	8.8 months
Ratio proliferation rate versus quiescence rate	4.0	5.5	5.2
Ratio death rate versus proliferation rate for DNA- damaged quiescent tissue	3.0	No feedback to proliferation	4.2

Prolonged response

First PCV cycle Last PCV cycle

PCV 6 weeks

PCV 9 months

PCV 6 weeks

PCV 9 months

MTD shrink	-34%	MTD shrink	-40%
Prolonged response	36 months	Prolonged response	64 months

Clinical translation

- Give only 3 cycles according to the classical protocol (every 2 months) and then monitor the tumor size for 9 months with periodic MRI
 - If the tumor resumes its growth (or remain stable) within the 9 months, start again treatment following the classical protocol
 - If the tumor size continues decreasing after 9 months, increase the treatment interval

Conclusions

- We propose a semi-mechanistic TGI model for low-grade glioma patients
- Parameters can be classified into:
 - system-specific parameters
 - treatment related parameters
- Consistency of system-specific parameters across different treatments including radiotherapy
- Future work includes link with long-term clinical outcome

