



# Why and how do we do benefit-risk assessment in drug regulation: lessons from IMI-PROTECT

EFSPI/PSI European Statistical Meeting – Structured Benefit-Risk Assessment 17<sup>th</sup> September 2013 London

Professor Deborah Ashby School of Public Health Imperial College London

#### **Evidence Based Medicine**

"EBM is the conscientious explicit, and judicious use of current best evidence in making decisions about the care of individual patients" taking into account "individual patients predicaments, rights and preferences using best evidence from clinically relevant research."

Sackett et al, 1996

#### The IMI-PROTECT

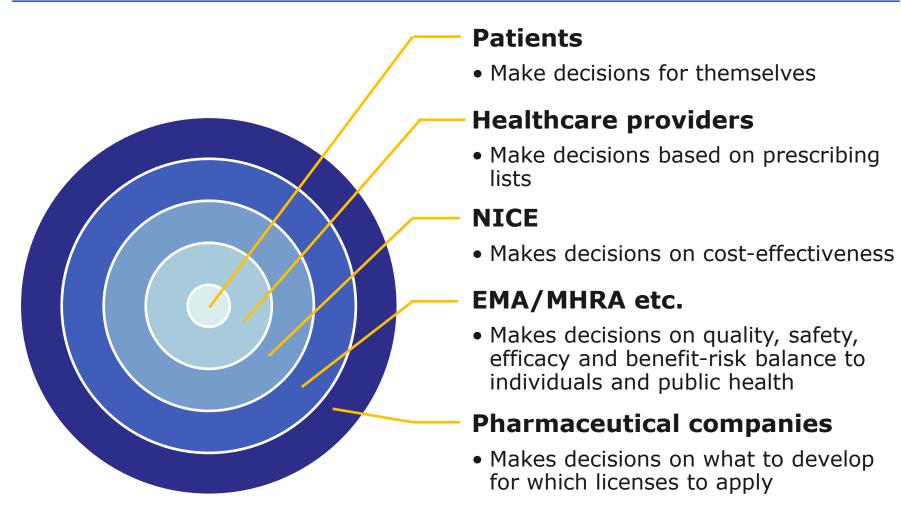
 PROTECT<sup>1</sup> (Pharmacoepidemiological Research on Outcomes of Therapeutics by a European ConsorTium)

 "Improving and strengthening the monitoring of the benefit/risk of medicines marketed in the EU" including graphical representation of risk-benefit led by EMA with 31 public and private partners, 2009-2014 (www.imiprotect.eu)

<sup>1</sup> PROTECT is receiving funding from the European Community's Seventh Framework Programme (F7/2007-2013) for the Innovative Medicine Initiative (<a href="www.imi.europa.eu">www.imi.europa.eu</a>)

# IMI- PROTECT Work Package 5 Benefit-risk integration and representation

#### **Objectives:**

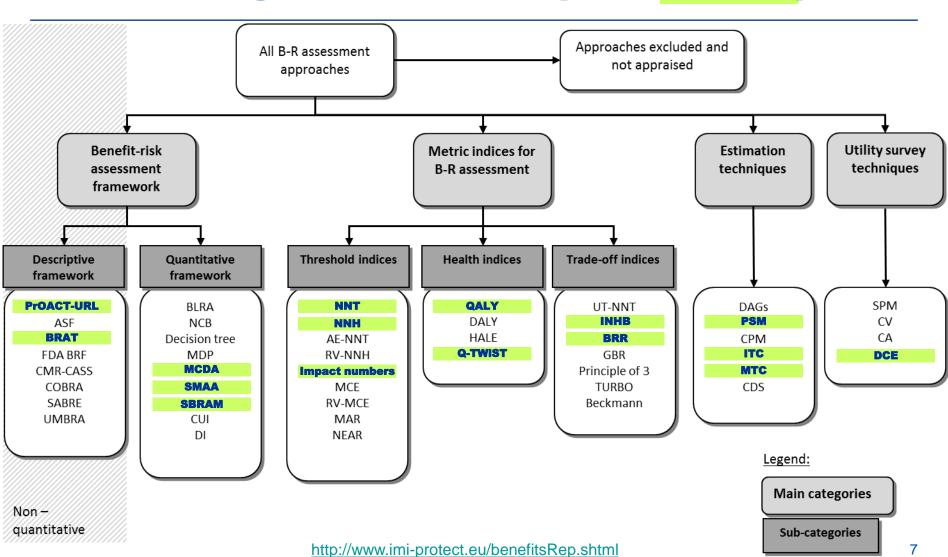



- To assess and test methodologies for the benefit-risk assessment of medicines
- To develop tools for the visualisation of benefits and risks of medicinal products

- → Individual and population-based decision making
- → Perspectives of patients, healthcare prescribers, regulatory agencies and drug manufacturers
- → From post-approval through lifecycle of products



#### **Decision makers – who are they?**

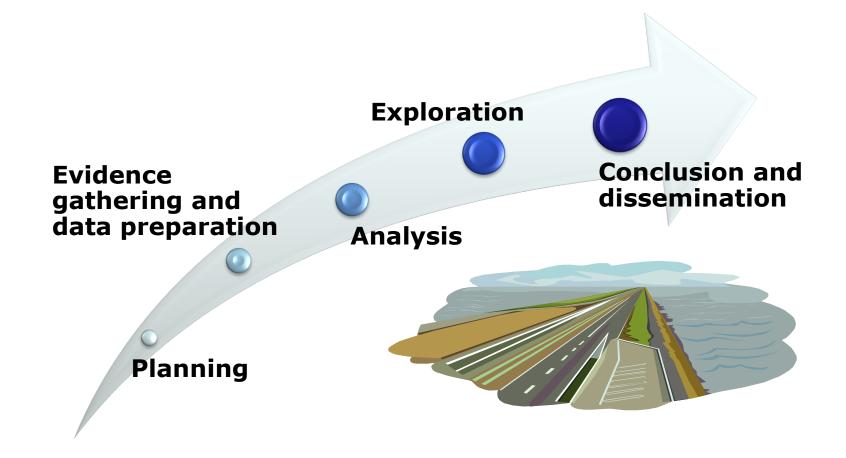



#### Challenges in medical decision-making

- Should we formalise decision-making at all?
- Which quantitative approach(es) to use?
- Whose value preferences take priority regulators, pharma, physicians or patients?
- How do we find these preferences simple elicitation, decision conferencing, discrete choice experiments....?
- Do we need stakeholders' preference a priori, or should we provide tools to allow individual decision-makers to explore their own preferences and the consequent decisions?
- How do we communicate benefits and risks?



#### Methodologies available (and tested)




#### **Disclaimers**

"The processes described and conclusions drawn from the work presented herein relate solely to the testing of methodologies and representations for the evaluation of benefit and risk of medicines.

This report neither replaces nor is intended to replace or comment on any regulatory decisions made by national regulatory agencies, nor the European Medicines Agency."

## **Recommendation Roadmap**

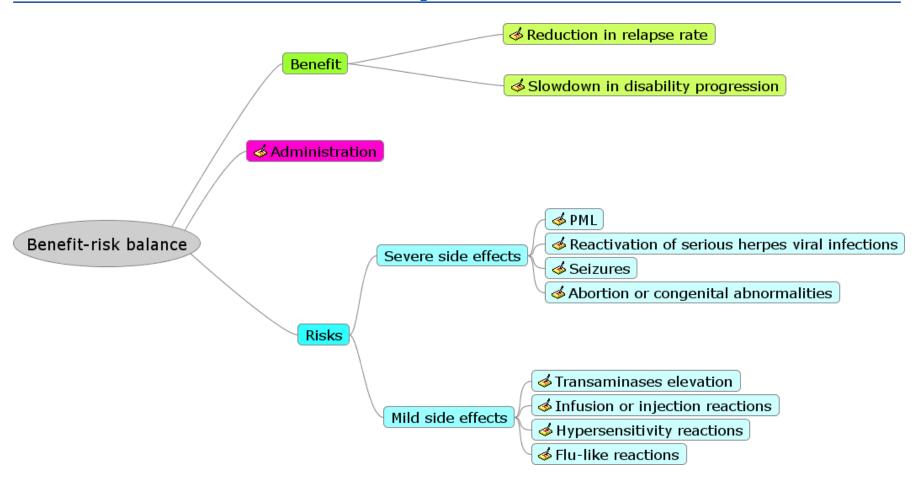


#### Stage 1: Planning

- encourages stakeholders to focus on critical issues related to BR assessment
- encourages sufficient thinking and thorough discussions between stakeholders to clearly define the purpose and context of the BR assessment
- ensures clear detailed summary documentation of discussions and results
- allows future analyses and updates to utilise the same foundations

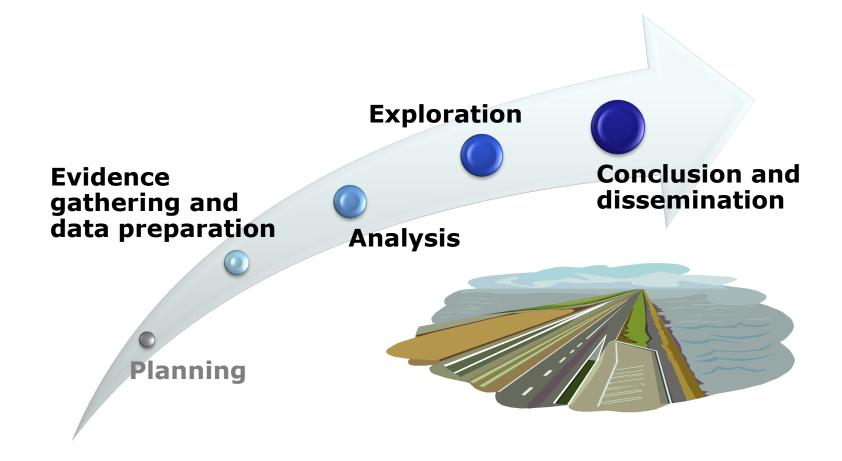


#### **Planning Toolbox**


| D=OACT LIDI      | BRAT                               |  |
|------------------|------------------------------------|--|
| PrOACT-URL       | BKAI                               |  |
| Problem          | Define decision context            |  |
| Objective        | Identify benefit and risk outcomes |  |
| Alternative      | Define the decision context        |  |
| Consequence      | Extract source data                |  |
|                  | Customise framework                |  |
| Trade-off        | Assess outcome importance          |  |
| Uncertainty      | Display & interpret key BR metrics |  |
| Risk tolerance   | Rey Divinicules                    |  |
| Linked decisions |                                    |  |

## Useful methodologies include:

- non-quantitative / descriptive frameworks to organize data
- tree diagrams and structured tables providing useful means of visualisation



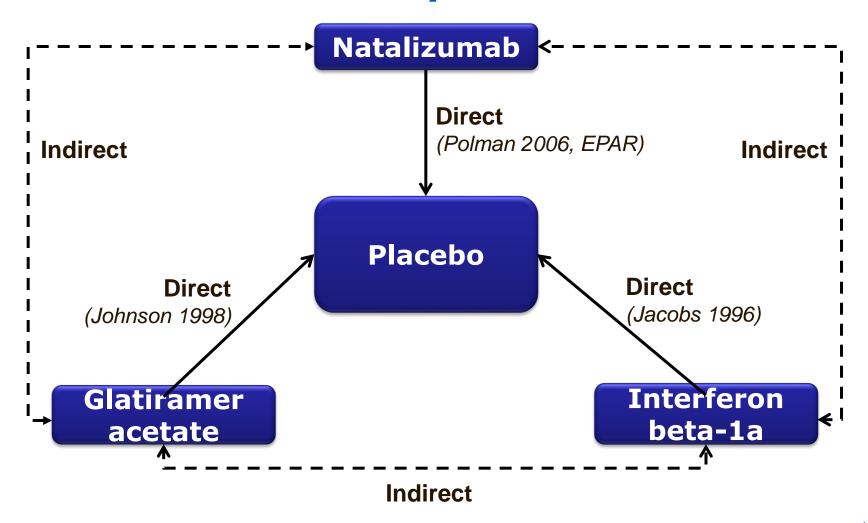

## An example of (value) tree diagram from natalizumab case study





#### **Recommendation Roadmap**




#### Stage 2: Evidence gathering and data preparation

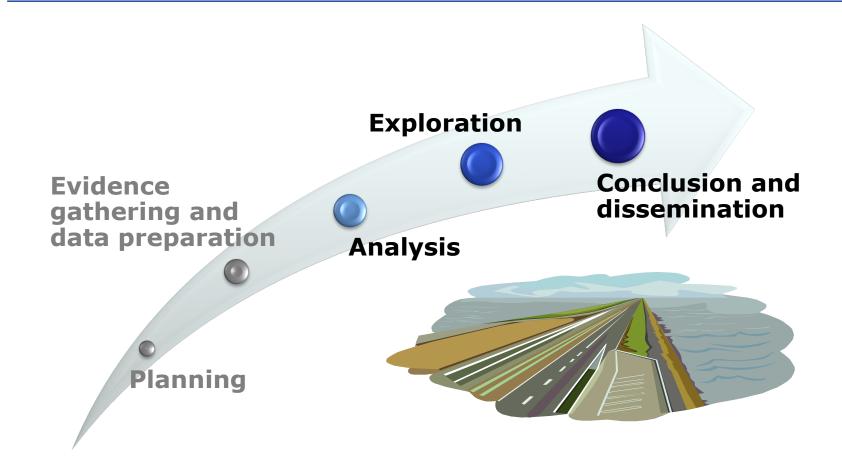
- Identifies and extracts evidence relevant to the BR assessment in relation to the set criteria
- Determines what data to be collected from anticipated type of BR analysis
- Aggregating multiple sources of evidence, may require the use of estimation techniques
- Encourages systematic handling of missing data
- Requires engagement of clinical, statistical, epidemiological and database expertise

# PROTECT Evidence Gathering and Data Preparation Toolbox

- Useful methodologies include:
  - Indirect/Mixed Treatment Comparison (ITC/MTC)
  - Probabilistic Simulation Method (PSM)
  - visualisation techniques such as structured and colourcoded tables, and network graphs to enhance the communication of data.

# An example of MTC network in the natalizumab case study




### An example of colour-coded tables of data summary

|          | Outcome                                                                                                                    |                                                               | Natalizumab Risk / Comparator Risk / 1000 pts 1000 pts |     | Risk Difference (95% CI)/<br>1000 pts |             |  |  |
|----------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----|---------------------------------------|-------------|--|--|
| Benefits | Convenience Benefits                                                                                                       | Convenience (weight 0.6%)                                     | -                                                      | -   | -                                     | (-, -)      |  |  |
|          | Medical Benefits                                                                                                           | Relapse (weight 3.9%)                                         | 280                                                    | 450 | -170                                  | (-, -)      |  |  |
|          |                                                                                                                            | Disability Progression (weight 5.6%)                          | 110                                                    | 140 | -30                                   | (-, -)      |  |  |
|          |                                                                                                                            |                                                               |                                                        |     |                                       |             |  |  |
|          | Infection                                                                                                                  | Reactivation of serious herpes viral infections (weight 6.7%) | 80                                                     | 70  | 10                                    | (-26, 45)   |  |  |
|          |                                                                                                                            | PML (weight 55.9%)                                            | 2                                                      | 0   | 2                                     | (-, -)      |  |  |
|          | Liver Toxicity                                                                                                             | Transaminases elevation (weight 11.2%)                        | 50                                                     | 40  | 10                                    | (-16, 38)   |  |  |
| s<br>S   | Reproductive Toxicity                                                                                                      | Congenital abnormalities (weight 5.6%)                        | -                                                      | -   | -                                     | (-, -)      |  |  |
| Ris      | Neurological Disorders                                                                                                     | Seizures (weight 5.6%)                                        | 0                                                      | 11  | -11                                   | (-23, 0)    |  |  |
|          | Other Infusion/Injection reactions (weight 2.8%) Hypersensitivity reactions (weight 1.1%) Flu-like reactions (weight 1.1%) | Infusion/Injection reactions (weight 2.8%)                    | 236                                                    | 312 | -76                                   | (-, -)      |  |  |
|          |                                                                                                                            | Hypersensitivity reactions (weight 1.1%)                      | 90                                                     | 40  | 50                                    | (20, 82)    |  |  |
|          |                                                                                                                            | Flu-like reactions (weight 1.1%)                              | 399                                                    | 608 | -209                                  | (-320, -98) |  |  |

Higher for Drug A
Higher for Comparator



#### **Recommendation Roadmap**



#### **Stage 3: Analysis**

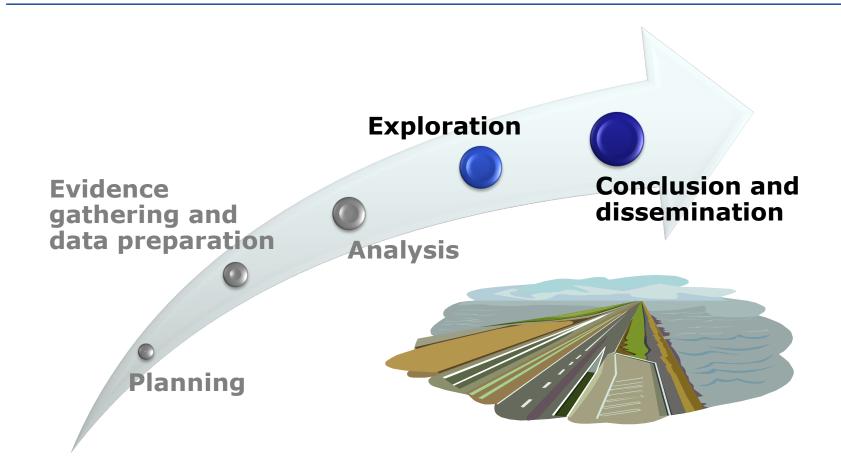
- Evaluates data collected at previous stage in a BR assessment
- Quantifies the magnitudes of benefits and risks
- Weighs or integrates quantitative measures of the BR balance depending on the type of analysis

#### **Analysis toolbox - methodologies**

- Useful methodologies include
  - metric indices which provide numerical representations of benefits and risks e.g. Number Needed to Treat / Number Needed to Harm (NNT/NNH), Impact numbers
  - quantitative frameworks which model benefit-risk trade-off and balance benefits and risks e.g. Multi-Criteria Decision Analysis (MCDA), Stochastic Multicriteria Acceptability Analysis (SMAA)
  - utility survey techniques which elicit stakeholders' preference information e.g. Discrete Choice Experiment (DCE)



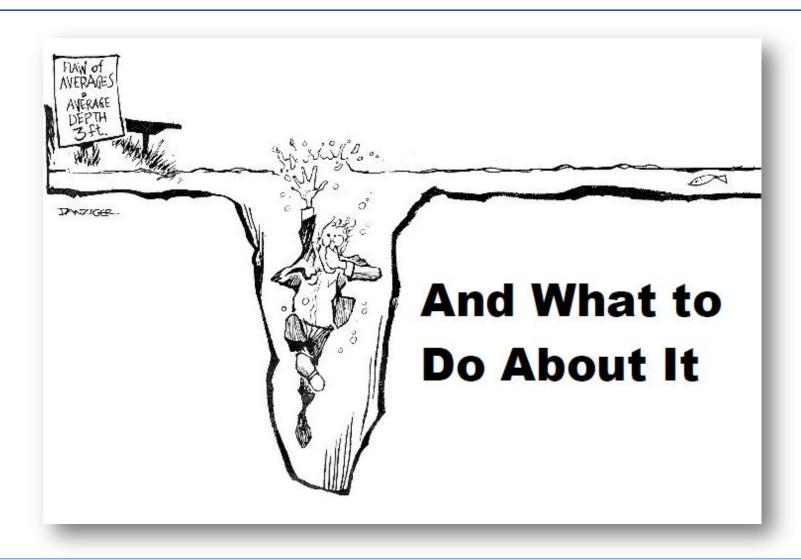
#### **Analysis toolbox – visualisations**


- Visualisations recommended for the analysis stage include
  - visualisation techniques specific for eliciting value preferences e.g. tree diagram, method-specific visualisations such as MACBETH grid, Analytic Hierarchy Process (AHP) table, swing-weighting 'thermometer' scale, drop-down list
  - visualisations for presenting analysis results e.g.
    tables, forest/interval plots for descriptive analyses;
    'Difference display' (MCDA) and stacked or grouped bar
    charts for quantitative analyses

#### **Examples on analysis**

Natalizumab and telithromycin presentations later

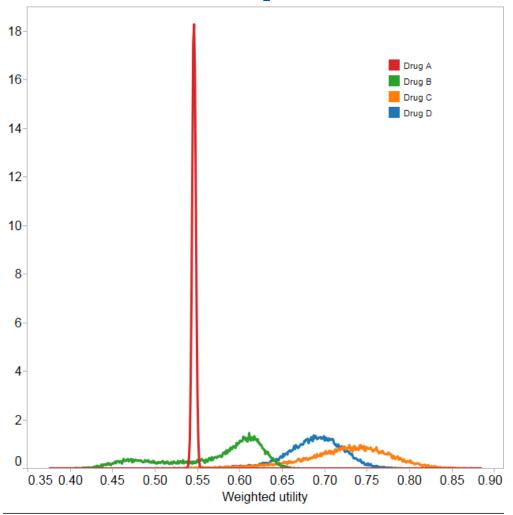



#### **Recommendation Roadmap**



#### **Stage 4: Exploration**

- Assesses the robustness and sensitivity of the main results to various assumptions and sources of uncertainties
- Assesses further consequences of a decision
- Considers any impact or added value to the RMPs
- Requires both statistical and clinical input


#### The flaw of averages

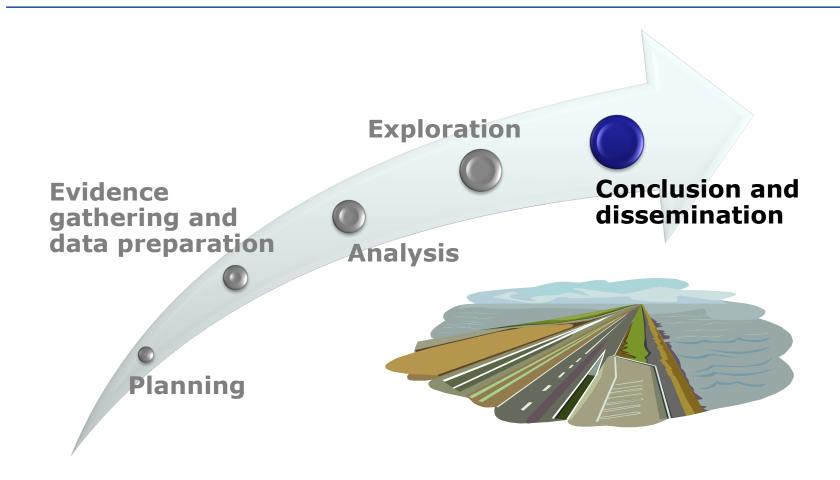


#### **Exploration toolbox**

- Useful methodologies include:
  - ITC/MTC, PSM, SMAA
  - Utility survey techniques e.g. DCE, AHP, Swingweighting, MACBETH
- Preferred visualisation techniques include:
  - the box, distribution, scatter, and forest/interval plots; tornado diagram; and techniques that are interactive with the user.

# An example of (interactive) distribution plot on uncertainty in the rimonabant case study




- Drugs
  - A = Placebo
  - B = Orlistat
  - C = Sibutramine
  - D = Rimonabant
- Online interactive version allowing own weights is available

http://public.tableausoftware.com/views/ Finalwave2dashboardfullrangeweight\_0/Dashboarddifference?: embed=v&:display\_count=no





#### **Recommendation Roadmap**



#### Stage 5: Conclusion and dissemination

- The point at which a conclusion is reached
- The results and consensus from the BR assessment are communicated to a wider audience
- Explicitly states findings and conclusions that could influence future actions
- Emphasises a transparent audit trail of the whole assessment process i.e. brings everything together and sets the course of action
- Ensures the "big picture" overview is not lost

#### **Summary**

- Choice of approach should match the complexity of the problem.
- In most simple problems, simple descriptive framework is likely to be sufficient.
- For more complex problems, a framework supplemented by quantitative models can facilitate consideration of trade-offs amongst the benefits and risks, address uncertainty, and potentially lead to a more comprehensive overall assessment.
- To understand the perspective of a particular stakeholder, elicitation of preference values for weighing benefits and risks may be required.

#### **Final remarks**

- Benefit-risk assessment methodologies support decision-making and are not intended to replace medical expertise.
- It is not a linear or sequential but an iterative process.
- Stakeholders such as patients and public involvement may add value and would lead to more clinically relevant decisions.

#### **Acknowledgements**

- The research leading to these results was conducted as part of the PROTECT consortium (Pharmacoepidemiological Research on Outcomes of Therapeutics by a European ConsorTium, <a href="www.imi-protect.eu">www.imi-protect.eu</a>) which is a public-private partnership coordinated by the European Medicines Agency.
- The PROTECT project has received support from the Innovative Medicine Initiative Joint Undertaking (www.imi.europa.eu) under Grant Agreement n° 115004, resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies' in kind contribution.



Pharmacoepidemiological Research on Outcomes of Therapeutics by a European Consortium

Home

Contact Us

Search

#### PROJECT

About PROTECT

Objectives

Governance structure

**Partners** 

Work programme

News

Results

**General Presentations** 

eRoom - partners only

#### Links

General Links

Collaborations

**Training Opportunities** 

**Pregnancy Study** 

Adverse Drug Reactions

Database www

**Drug Consumption** 

Databases in Europe

#### Key achievements of PROTECT

#### Framework for pharmacoepidemiology studies

- Presentations (24)
- Publications (5)
- Reports and Databases (1)

#### Methods for Signal Detection

- Presentations (14)
- Publications (4)
- Reports and Databases (1)

#### New Methods for data collection from consumers

- Presentations (3)
- Publications
- · Reports and Databases

#### Benefit- Risk integration and representation

- Presentations (14)
- Publications
- Reports and Databases (14)

#### Replication studies

- · Presentations (1)
- Publications
- · Reports and Databases

#### Training and Communication

- Presentations
- Publications
- Reports and Databases (1)



http://www.imi-protect.eu/results.shtml#