PARAMETRIC APPROACHES TO THE ANALYSIS OF TIME TO EVENT DATA: WHY NOT?

Kevin J Carroll November 7, 2013

Contents

- Brief Background
- The two parameter Weibull
- Examples
 - #1 bicalutamide in early prostate cancer
 - #2 PLATO: acute coronary syndromes
 - #3 Sample size determination
 - #4 Iressa: duration of response
 - #5 Randomised oncology Phase II
- Summary

ACCELERATED FAILURE TIME AND THE WEIBULL

- AFT analysis represents a powerful and versatile alternative to traditional Cox PH approach
- Let *T* represent log failure time, then an AFT model is simply $t = \mu + \underline{\beta}' \underline{x} + \epsilon$
- Examples include Exponential, Log Normal and Weibull
- Weibull is the only AFT member that is simultaneously proportional:

$$\circ f(t) = \alpha \lambda t^{\alpha - 1} e^{-\lambda t^{\alpha}} \text{ with } t > 0, \, \alpha > 0, \, \lambda > 0$$

$$\circ S(t) = e^{-\lambda t^{\alpha}}, \, h(t) = \alpha \lambda t^{\alpha - 1}$$

$$\circ HR(t) = \frac{\alpha_E \lambda_E}{\alpha_C \lambda_C} t^{\alpha_E - \alpha_C} \text{ so that } HR(t) = \frac{\lambda_E}{\lambda_C} \text{ if } \alpha_E = \alpha_C$$

WEIBULL SURVIVOR FUNCTION

WEIBULL HAZARD FUNCTION

Time

Some Properties and Features of the Weibull

• AFTs easily fit in SAS via PROC LIFEREG

• Supports regular time to event and interval censored analysis

$$\circ \alpha = 1/\sigma$$
 and $\log(\lambda) = -(\mu + \underline{\beta}' \underline{x})/\sigma$

• If x = 0, 1 denotes control and experimental, $\log(HR) = -\beta/\sigma$ with variance $\hat{var}[\log(\hat{HR})] = (\hat{\beta}/\hat{\sigma})^2 (\hat{\beta}^{-2}\hat{var}(\hat{\beta}) + \hat{\sigma}^{-2}\hat{var}(\hat{\sigma}) - 2\hat{\beta}^{-1}\hat{\sigma}^{-1}\hat{cov}(\hat{\beta},\hat{\sigma}))$

• Event Time Ratio

• Percentile: $t_p = \{\lambda^{-1}log(p^{-1})\}^{\alpha^{-1}}$

$$\circ t_{Ep}/t_{Cp} = HR^{-\alpha^{-1}}$$

Some Properties and Features of the Weibull

• Estimated survivor function $\widehat{S}(t) = e^{-\widehat{\lambda}t^{\widehat{\alpha}}}$

$$\circ \ \widehat{var} \left[log \left(-log \hat{S}(t) \right) \right] = \frac{1}{\widehat{\sigma}^2} \left(\widehat{var}(\hat{\mu}) + \widehat{var}\left(\underline{\hat{\beta}'} \right) \right) + \left\{ \frac{\left(\widehat{\mu} + \underline{\hat{\beta}'} \underline{x} - \log(t) \right)}{\widehat{\sigma}^2} \right\}^2 \widehat{var}(\hat{\sigma})$$
$$+ \frac{2}{\widehat{\sigma}^2} cov \left(\hat{\mu}, \underline{\hat{\beta}'} \right) - \frac{2}{\widehat{\sigma}^3} \left(\hat{\mu} + \underline{\hat{\beta}'} \underline{x} - \log(t) \right) \left(cov(\hat{\mu}, \hat{\sigma}) + cov \left(\underline{\hat{\beta}'}, \hat{\sigma} \right) \right)$$

• Allows CI envelope for $\hat{S}(t)$ to be estimated

• Direct test of proportionality

$$\circ \frac{\{\log(\widehat{\alpha}_E/\widehat{\alpha}_C)\}^2}{\widehat{\alpha}_E^{-2}Var(\widehat{\alpha}_E) + \widehat{\alpha}_C^{-2}Var(\widehat{\alpha}_C)} \sim \chi_1^2$$

• Asymptotically equally efficient to Cox regression

 $\circ \, \hat{var} \left[\log(\widehat{HR}_{Cox}) \right] \cong 1/d_E + 1/d_C \quad \text{(Sellke and Siegmund 1983)}$ $\circ \, \hat{var} \left[\log(\widehat{HR}_{AFT}) \right] \cong 1/d_E + 1/d_C \quad \text{(Carroll 2003)}$

SOME PROPERTIES AND FEATURES OF THE WEIBULL

• Average event rate over (0,T]

• Integrated hazard over $(0,T] = \lambda T^{\alpha}$ so the average hazard, $H_{\lambda} = \lambda T^{\alpha-1}$

 $\circ \hat{var}[log(\lambda T^{\alpha-1})]$ easily attained via delta method as for $\hat{var}[log(-log\hat{S}(t))]$

 $\circ H_E/H_C$ = ratio of average hazards over (0,T] even if data non-proportional

• Predicting data maturation

- Assume an analysis has been performed with a mean follow-up time F, at which time d patients have died and c = n d are censored.
- Consider the individual *i* with covariates \underline{x}_i , censored at time *F*. The probability that this individual survives to time F + S is $e^{-\lambda_i \{(F+S)^{\alpha} + F^{\alpha}\}}$ so that $F + S = (-\lambda_i^{-1} \ln(u) + F^{\alpha})^{-\alpha}$ where $u \sim U(0,1)$

SOME PROPERTIES AND FEATURES OF THE WEIBULL

- Predicting data maturation (contd.)
 - Survival times for the *c* censored individuals can be predicted if *c* deviates are randomly sampled from a U(0,1) distribution, and substituted into $\left(-\lambda_i^{-1}\ln(u) + F^{\alpha}\right)^{-\alpha}.$
 - If, for the i^{th} patient, predicted survival exceeds F + S, then the patient remains censored; otherwise the patient is predicted to have died in the interval (F, F + S].
 - Repeating this process and averaging over repeats provides an estimate of the number of additional deaths expected in the interval (F, F + S].

Some Properties and Features of the Weibull

• Impact of departures from the Weibull

• Simulation studies show similar results via Cox and Weibull modelling irrespective of true underlying distribution of the time to event (Carroll 2003)

Some Properties and Features of the Weibull

• Impact of departures from the Weibull

	μ_A/μ_B^b		Cox an	alysis		Weibull analysis						
$\lambda_I{}^a$		$\tilde{\mu}_A / \tilde{\mu}_B^c$	HR ^d	SE ^e ln HR	t	HR	SE 1n HR	t	ETR ^f	SE In ETR	t	
0.01	1.25	1.13	0.834	0.1199	-1.51	0.826	0.1185	-1.62	1.099	0.0585	1.62	
0.01	1.50	1.26	0.716	0.1270	-2.64	0.702	0.1251	-2.83	1.191	0.0612	2.86	
0.10	1.25	1.10	0.872	0.1142	-1.19	0.874	0.1073	-1.25	1.115	0.0868	1.25	
0.10	1.50	1.21	0.783	0.1195	-2.05	0.784	0.1123	-2.16	1.221	0.0920	2.17	
1	1.25	1.00	0.995	0.1096	-0.05	0.982	0.1341	-0.33	1.033	0.1568	0.14	
1	1.50	1.00	0.987	0.1127	-0.12	0.967	0.1407	-0.25	1.043	0.1658	0.25	

Table 4. Simulation of piecewise exponential: analysis by Cox and by Weibull

^a Common event rate over first 3 months.

^b Ratio of mean times to event; $\mu_A = 6$ months throughout.

^c Ratio of median times to event.

^d Hazard ratio.

^e Standard error.

^f Event time ratio.

Table 3. Estimated hazard (HR) and event time ratios (ETR) for active relative to placebo

Cox			Weibull							
HR	SE ^a	95% CI ^b	HR	SE	95% CI	ETR	SE	95% CI		
0.574	0.0947	0.477, 0.692	0.575	0.0947	0.477, 0.693	1.495	0.0706	1.302, 1.717		

^a Standard error.

^b Confidence interval.

Additional	Expected
<u>follow-up:</u>	<u>maturity:</u>
1 year	21%
2 years	28%
3 years	35%

Table 3. Estimated hazard (HR) and event time ratios (ETR) for active relative to placebo

Cox			Weibull						
HR	SE ^a	95% CI ^b	HR	SE	95% CI	ETR	SE	95% CI	
0.574	0.0947	0.477, 0.692	0.575	0.0947	0.477, 0.693	1.495	0.0706	1.302, 1.717	

^a Standard error.

^b Confidence interval.

Additional	Expected
follow-up:	<u>maturity:</u>
1 year	21%
2 years	28%
3 years	35%

Table 3. Estimated hazard (HR) and event time ratios (ETR) for active relative to placebo

Cox			Weibull					
HR	SE ^a	95% CI ^b	HR	SE	95% CI	ETR	SE	95% CI
0.574	0.0947	0.477, 0.692	0.575	0.0947	0.477, 0.693	1.495	0.0706	1.302, 1.717

^a Standard error.

^b Confidence interval.

Additional	Expected
follow-up:	maturity:
1 year	21%
2 years	28%
3 years	35%

- PLATO trial: ticagrelor vs clopidogrel in acute coronary syndromes
- 18,642 patients
- Primary endpoint time to first of non-fatal stroke, non-fatal myocardial infarction or CV death
- Highly significant interaction between treatment effect (HR) and aspirin dose (p<0.00001)
- Aim : to describe and characterise the relationship between the HR and aspirin dose

PLATO: Weibull modelling, HR vs Aspirin dose

• Determination of sample size

 \circ d events required for $1 - \beta$ power, 1-sided α level

• $n = d\tilde{\pi}^{-1}$ where $\tilde{\pi} = 2/(\pi_E^{-1} + \pi_C^{-1})$ is the average probability of an event over the trial follow-up period R + F.

- If patient entry times *r*, over accrual period of length *R* has pdf *f*(*r*) then $\pi = \int_{r=0}^{R} \int_{t=r}^{R+F} f(t|r)f(r)dtdr = 1 - E_r \left[e^{-\lambda(R+F-r)^{\alpha}}\right] \approx 1 - e^{-\lambda(R+F-E[r])^{\alpha}}$ • If $r \sim U(0, R)$, $\pi \approx 1 - e^{-\lambda(R+F-R/2)^{\alpha}}$
- \circ E.g. 508 events to test hypothesis true HR is 0.75.
- \circ R=12, F=6, $\alpha = 0.33$, $\lambda_C = 0.385$ then $\pi_C = 0.586$ and $\pi_E = 0.551$ so that $\tilde{\pi} = 0.568$, hence n = 508/0.568 = 895

• Expected duration of response

Time since response (days)

• Expected duration of response

Table 3

Gefitinib vs. placebo, INTACT 2. Comparison of treatments for Expected Duration of Response using exponential, Weibull and log Normal densities

	Exponential		Weibull		Log Normal		
	Gefitinib N=347	Placebo N=345	Gefitinib N=347	Placebo N=345	Gefitinib N=347	Placebo N=345	
Response rate, % [1]	30.6%	29.9%	30.6%	29.9%	30.6%	29.9%	
Mean DoR ^a [2]	221.6	148.8	173.7	134.7	202.6	139.5	
SE ^b DoR	0.137	0.115	0.083	0.057	0.131	0.074	
$EDoR^{c}[1]x[2]$	67.7	44.4	53.1	40.2	61.9	41.7	
Ratio of EDoR and 95% Cld	1.524		1.320		1.486		
	(1.003 to 2.313)		(0.977 to 1.783)		(1.025 to 2.155)		
	P=0.048		P=0.07		P=0.04		

^aDoR = Duration of response in responding patients, days.

^bSE = standard error.

^cEDoR = Expected duration of response, days.

^dCI = Confidence interval.

1.0 0.9 0.8 Proportion alive and progression free 0.7 0.6 0.5 0.4 0.3 Pt-mths E/Pt-mths E/N %E Group 0.2 -Control 32/50 64% 293.8 0.109 392.4 22/50 44% 0.056 Drug 0.1 -Cox: HR=2.10 SE logHR=0.280 95%CI (1.21,3.64) p=0.0080

Example #5 Oncology Randomised Phase II

Time post randominsation (months)

6

12

10

8

9

11

5

4

0.0

0

2

3

Time post randominsation (months)

Proportion alive and progression free

Time post randominsation (months)

Proportion alive and progression free

Summary

- Pharma statisticians are addicted to Cox and Kaplan-Meier
 - Familiarity and widespread use means these approaches are seldom questioned
- Use of parametric survival models is not scary
 - Conceptually no different to MMRM for repeated measures or Negative Binomial for repeat events (e.g. COPD)
 - Weibull analysis gives very similar results to Cox in terms of the HR, CI and p-value regardless of true underlying distribution of time to event
- Versatile and offers greater range of inferences and deeper insight than conventional Cox analysis
 - E.g. Event time ratio, event rate estimates, median and CI estimated, maturation predication
- Should at least be used as a supportive analysis to a regular Cox analysis