

θ	τ ²	At stopping	Fixed	Random	Bayes	Approx Bayes
0	0	No. Trials	5.5	6.4	8.6	7.5
		P(superiority)	0.039	0.034	0.007	0.017
		% coverage all CIs	92.2	93.1	98.4	96.5
	0.0625	No. Trials	5.3	7.7	9.2	8.8
		P(superiority)	0.095	0.067	0.027	0.045
		% coverage all CIs	81.5	86.2	94.6	91.2
	0.25	No. Trials	4.8	13.1	12.7	14.3
		P(superiority)	0.225	0.115	0.083	0.084
		% coverage all CIs	55.6	77.7	83.9	83.7

θ	t ²	At stopping	Fixed	Random	Bayes	Approx Bayes
0.5	0	No. Trials	3.7	4.3	5.9	5.2
		P(superiority)	0.948	0.958	0.974	0.968
		% coverage all CIs	91.6	92.5	98.2	95.8
	0.0625	No. Trials	3.7	5.2	6.2	6.0
		P(superiority)	0.909	0.938	0.948	0.947
		% coverage all CIs	80.9	86.7	94.6	91.3
	0.25	No. Trials	3.7	8.3	8.0	9.1
		P(superiority)	0.840	0.909	0.901	0.908
		% coverage all CIs	56.4	77.9	83.5	83.1

θ	τ ²	At stopping	Fixed	Random	Bayes	Approx Bayes
0 0	0	No. Trials	10.5	11.9	13.9	12.5
		P(superiority)	0.032	0.028	0.015	0.023
		% coverage all CIs	93.2	93.9	96.9	95.1
	0.0625	No. Trials	10.3	13.4	14.5	14.0
		P(superiority)	0.057	0.046	0.027	0.037
		% coverage all CIs	88.5	90.9	94.5	92.5
	0.25	No. Trials	9.7	19.5	17.5	19.9
		P(superiority)	0.136	0.069	0.063	0.060
		% coverage all CIs	71.8	85.9	87.7	87.8

θ	T ²	At stopping	Fixed	Random	Bayes	Approx Bayes
0.5	0	No. Trials	7.0	7.9	9.4	8.5
		P(superiority)	0.933	0.943	0.947	0.942
		% coverage all CIs	93.6	94.6	97.4	95.5
	0.0625	No. Trials	7.0	9.0	9.7	9.5
		P(superiority)	0.903	0.922	0.932	0.926
		% coverage all CIs	87.9	90.8	94.6	92.7
	0.25	No. Trials	6.8	12.3	11.3	12.7
		P(superiority)	0.861	0.909	0.901	0.909
		% coverage all CIs	72.1	85.4	86.5	87.0

		Fixed effects	Random effects	Approx Bayes IG(1.5,0.08)	Approx Bayes IG(1.5,1)
At Stopping	No. Trials	9	21	21	21
	Z/V	0.55	1.11	1.10	1.12
	CI	0.00, 1.10	0.04, 2.18	0.06, 2.15	0.00, 2.23
	τ ²	0	0.93	0.91	0.99
PEST analysis	Median unbiased estimate θ	0.54	1.10	1.09	1.11
	СІ	0.16, 0.92	0.58, 1.62	0.57, 1.61	0.58, 1.65

8. Conclusions

- Formal sequential procedures address the multiple looks problem within a cumulative meta-analysis
- O'Brien and Fleming sequential design with Christmas tree correction leads easily to repeated confidence intervals
 - Use forest plots to present sequential meta-analyses
- Fixed and random effect approaches can lead to inflated Type I error and poor CI coverage
- > The Bayesian approaches can reduce these problems
- > The approximate Bayes method is simpler to implement
 - Easy to program in standard software
- Careful choice of priors is needed
- > Could consider different sequential designs and responses

EFSPI-BBS 26 June 2009 MPS Research Unit, Lancaster University

25