Individual patient data meta-analysis on erythropoiesis-stimulating agents and mortality in patients with cancer

Guido Schwarzer, Martin Schumacher

German Cochrane Center, Institute of Medical Biometry and Medical Informatics, University Medical Center Freiburg, Freiburg, Germany

sc@imbi.uni-freiburg.de, ms@imbi.uni-freiburg.de

June 26, 2009

Medical Background

Background

- Erythropoietin (EPO) is a glycoprotein hormone controlling red blood cell production
- Erythropoiesis-stimulating agent (ESA) produced by recombinant DNA technology are utilised as treatment in anaemic patients (and as blood doping agent in cycling, ...)
- Main medical indication of ESAs:
 - Anaemia due to chronic kidney disease
 - Anaemia in cancer patients
- ESAs reduce the number of patients needing red blood cell transfusions, however increase the risk of thromboembolic events and may stimulate tumour growth
- Main pharmaceutical companies: Amgen, Johnson & Johnson, Hoffmann-La Roche

Cochrane review on ESAs for cancer patients

- Project leadership: Cochrane Haematological Malignancy Group (CHMG), Cologne, Germany (Prof. A. Engert, Dr. J. Bohlius)
- Bohlius et al. (2005), JNCI:
 - Overall survival: HR=0.84 [0.69; 1.02], 19 trials, n=2805
- Bohlius et al. (2006), JNCI:
 - Overall survival: HR=1.08 [0.99; 1.18], 42 trials, n=8167
- Newer trials
 - tend to enrol patients with higher baseline haemoglobin levels
 - tend to enrol patients who used higher ESA doses
 - target haemoglobin levels higher than 13g/dL to maintain high haemoglobin levels in non-anaemic cancer patients
- Meta-analyses based on aggregated/study-level data
 - → Subgroup analyses only possible on study level

EPO IPD Project

- Project leadership: Cochrane Haematological Malignancy Group (CHMG), Cologne, Germany (Prof. A. Engert, Dr. J. Bohlius)
- Project funded by German Ministry of Education and Research and OncoSuisse, Switzerland
- Individual patient data (IPD) contributed by pharmaceutical companies (Amgen, Johnson & Johnson, Hoffmann-La Roche) and independent trialists

EPO IPD Project

- Objectives:
 - Examine ESA effects on survival of cancer patients
 - Identify factors that might modify ESA effects
- Endpoints:
 - On-study mortality
 - → patient on trial treatment plus short follow-up period (four weeks or 28 days)
 - Overall survival
 - → longest follow-up available
- Inclusion criteria:
 - Cancer patients
 - Anaemic or non-anaemic
 - Receiving chemotherapy, radiotherapy, radio-chemotherapy or no anti-cancer therapy
 - ESA plus transfusions if needed versus transfusions if needed
 - Randomised controlled trials

Legal setting

- Contract between University of Cologne (CHMG) and pharmaceutical companies setting regulatory framework
- Subcontracts between Universities of Cologne and Freiburg and Bern
- Steering Committee consisting of clinicians and methodologists from haematology, oncology, radiotherapy, clinical epidemiology, biostatistics and a consumer representative
- Advisory Board consisting of members of pharmaceutical companies and individual trialists providing IPD
- Advisory Board could give advise to the Steering Committee but had no decision-making authority

Methods

 Analyses predefined in peer-reviewed protocol approved by the Steering Committee and published in The Cochrane Library

- Statistical analyses described in detail in statistical analysis plan based on outline given in Cochrane protocol
- Data management, preprocessing and cleaning done in Cologne, Germany
- Main statistical analyses done independently:
 - Institute of Social and Preventive Medicine (ISPM), Bern, Switzerland (using Stata 10)
 - Institute of Medical Biometry and Medical Informatics (IMBI), Freiburg, Germany (using R 2.7.1)
- Standardised Operating Procedures for data security and confidentiality (Cologne, Freiburg, Bern)

Data management

- All data exchange encrypted using TrueCrypt
- Data entered in dedicated SAS database
- Data checked for accuracy, consistency, and completeness of follow-up
- Lists of data identified as missing, implausible or inconsistent sent to companies or independent investigators
- Discrepancies between published data and IPD (number of deaths, number of patients, hazard ratio) discussed with companies or independent investigators
- Main outcomes overall survival and on-study mortality were re-coded in duplicate in Cologne and Bern

Milestones

► Kickoff meeting in Cologne: September 21, 2007

► Final protocol (Version 14): January 28, 2008

► Contract signed between CHMG and companies: January 31, 2008

► Final statistical analysis plan (Version 1.01): June 25, 2008

► Final analysis data set: August 7, 2008

► Advisory Board (AB) meeting in Bern: September 18, 2008

► Final report (AB & Steering Committee): November 13, 2008

Studies and Data (Lancet 2009)

> 5000 references screened > 400 papers assessed in full text 63 eligible RCTs 53 RCTs with individual patient data (14206 patients) 273 patients excluded 53 RCTs with 13933 patients analysed

Missing data

- Several variables not available/provided for entire studies
 - History of thromboembolic event, hypertension, diabetes mellitus or cardiovascular events
 - Previous or current chemotherapy or radiotherapy
- ► Information on treatment status (untreated, in complete response, partial response, stable disease) unknown in ≈70%
- ▶ No structured information on disease stage in ≈80%
 - → Generated based on free text entries per patient and available study documents
- Missing or not reported data not balanced across studies

Outcomes / Populations / Objectives

Outcomes:

(1) On-study mortality / (2) Overall survival (both of primary interest)

Populations (defined on study level):

- ► (1) All cancer / (2) Chemotherapy (both of primary interest)
- (3) Radiotherapy / (4) None / (5) Mixed (secondary interest)

Objective 1:

- Examine the effect of ESAs
 - Unadjusted models to assess overall treatment effect
 - Models adjusted for baseline imbalances to assess overall treatment effect

Objective 2:

- Identification of factors modifying the effect of ESAs
 - Evaluation of interaction between treatment and additional factor in regression models

Objective 1 – Unadjusted models

Model	Comment
Two-stage log-rank fixed effect model Two-stage log-rank random effects model Two-stage Cox fixed effect model Two-stage Cox random effects model	Primary analysis
Cox model stratified by study	One-stage, fixed effect

Two-stage methods - First step

For each study *i*, calculate log-hazard ratio θ_i and its standard error

Methods and results

▶ Based on log-rank expected (E_i) and observed number of events (O_i):

$$\theta_i = \frac{O_i - E_i}{V_i}, \quad SE(\theta_i) = \sqrt{1/V_i}$$

with $1/V_i$ denoting the Mantel-Haenszel variance of the log-hazard ratio

Based on separate Cox regression model for study i:

$$\lambda_{ij}(t) = \lambda_{0i}(t) \exp(\beta_i^{ESA} \cdot x_{ij}^{ESA})$$

with $\theta_i = \beta_i^{\text{ESA}}$ and treatment covariate x_{ij}^{ESA} for patient j

Two-stage methods – Second step

Fixed effect and random effects (DerSimonian-Laird) meta-analysis:

$$\theta = rac{\sum w_i heta_i}{\sum w_i}$$
 with $w_i = rac{1}{[SE(heta_i)]^2}$ or $rac{1}{[SE(heta_i)]^2 + au^2}$

with between-study variance τ^2

- Forest and funnel plot to display results
- Linear regression test for funnel plot asymmetry
- Assessing statistical heterogeneity:
 \(\chi^2\)-Test, \(l^2\) statistic
- Meta-analytic approach familiar to Cochrane reviewers

One-stage method

Cox model stratified by study:

$$\lambda_{ij}(t) = \lambda_{0i}(t) \exp(\beta^{ESA} \cdot x_{ij}^{ESA})$$
 (1)

Cox model allowing for heterogeneity in log-hazard ratio across studies:

$$\lambda_{ij}(t) = \lambda_{0i}(t) \exp(\beta_i^{ESA} \cdot x_{ij}^{ESA})$$
 (2)

Test for heterogeneity in log-hazard ratio across studies: Likelihood ratio test comparing models (1) and (2)

Results: On-study mortality, all cancer patients (*n* =13933)

Model	ESA vs Control HR [95% CI]	p-value ¹	<i>p</i> -value ²
Two-stage methods			
Log-rank fixed effect model Log-rank random effects model Cox fixed effect model Cox random effects model	1.17 [1.06-1.30] 1.17 [1.06-1.30] 1.16 [1.05-1.29] 1.16 [1.05-1.29]	0.0025 0.0025 0.0042 0.0042	0.87 0.87 0.93 0.93
Cox model stratified by study	1.17 [1.06-1.30]	0.0025	0.63

¹ Test for overall treatment effect

² Test for heterogeneity

Results: On-study mortality, chemotherapy trials (n = 10441)

Model	ESA vs Control HR [95% CI]	p-value ¹	p-value ²
Two-stage methods			
Log-rank fixed effect model Log-rank random effects model Cox fixed effect model Cox random effects model	1.10 [0.98-1.24] 1.10 [0.98-1.24] 1.09 [0.97-1.23] 1.09 [0.97-1.23]	0.12 0.12 0.16 0.16	0.72 0.72 0.88 0.88
Cox model stratified by study	1.10 [0.98-1.24]	0.12	0.46

¹ Test for overall treatment effect

² Test for heterogeneity

Objective 1 – Adjusted models

- Models adjusted for baseline imbalances to assess overall treatment effect
- Considered both pre-specified and exploratory variables
- "Pre-specified variables":
 Variables defined for subset analyses in first Cochrane Protocol in 2002 (i.e. documented before the first trials with detrimental effects on survival were published)
- "Exploratory variables":
 Variables proposed for subset analyses after detrimental study results became available

Objective 1 – Adjusted models

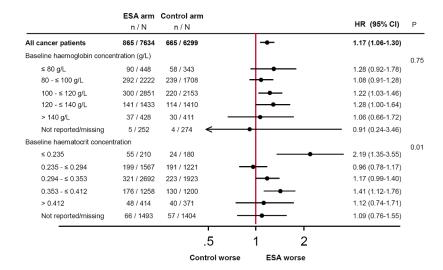
- List of "pre-specified variables":
 - ► Haemoglobin at baseline (continuous, categorical: ≤8, 8–10, 10-12, 12–14, >14g/dL)
 - Tumour type (solid tumours vs haematological malignancies)
 - Cancer treatment modality (chemotherapy induced anaemia vs anaemia of cancer)
 - Tumour treatment (chemotherapy vs radiotherapy vs mixed vs other vs none)
 - Quality items: randomisation, concealment, placebo-controlled, blinding, less than 10% exclusions
 - Iron supplementation policy (fixed, as needed by protocol, discretion of physician, none)
 - Planned duration of ESA treatment (continuous, categorical: ≤8, 8–16, >16 weeks)
- List of "exploratory variables":
 - Haematocrit, serum EPO level at baseline, sex, age, BMI, ECOG performance status, ...

Objective 1 – Adjusted models

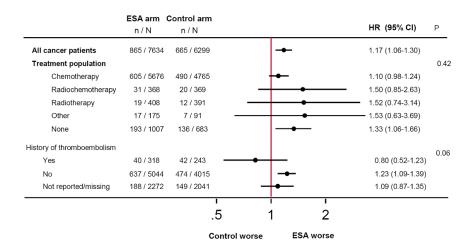
- Stratified Cox regression model (1) plus an additional covariate
- All additional covariates with p-value below 0.1 (likelihood-ratio test comparing Cox models with and without additional covariate) suitable for multivariate model
- No formal stepwise model selection done due to large number of missing values
- Informal selection of additional covariates for multivariate model based on p-value of likelihood-ratio test and percentage of missing information resulting in multivariate models

Multivariate models: On-study mortality, all cancer patients

Model	n	ESA vs Control HR [95% CI]
Model 1 (unadjusted) Model 1 (adjusted) Model 2 (unadjusted) Model 2 (adjusted) Model 3 (unadjusted) Model 3 (adjusted)	13353 13353 11636 11636 10599 10599	1.17 [1.06-1.30] 1.17 [1.06-1.30] 1.22 [1.09-1.36] 1.21 [1.08-1.35] 1.16 [1.03-1.30] 1.16 [1.03-1.30]


Model 1: ESA + Hb at baseline + Age + Sex + Tumour category

Model 2: Model 1 + Tumour stage Model 3: Model 1 + Region + BMI


Objective 2 - Evaluation of interactions

- Cox regression model stratified by study with treatment factor and an additional covariate plus interaction between treatment and additional variable
- All additional covariates with p-value below 0.1 for interaction terms (likelihood-ratio test comparing Cox models with and without interaction term) evaluated in more detail
- No formal stepwise model selection done due to large number of missing values
- Covariates with a significant interaction term were included as additional covariate plus interaction term in multivariate model derived for Objective 1

Effect modifiers for on-study mortality (Lancet 2009)

Effect modifiers for on-study mortality (Lancet 2009)

Discussion

- Most comprehensive meta-analysis on ESAs in cancer patients based on individual patient data
- Main results:
 - ESAs increased on-study mortality and worsened overall survival in cancer patients
 (less pronounced for patients undergoing chemotherapy)
 - No strong evidence for effect modifiers
 - → Confirmation of results based on aggregated/study-level data
- Current indication for ESA treatment (FDA, August 2008):
 - Treatment of anaemia due to concomitant chemotherapy
 - Not indicated when anticipated outcome is cure
 - Use of lowest dose to avoid red blood cell transfusion

Discussion

- Remarkable cooperation between academia and pharmaceutical companies:
 - Academia: Cochrane protocol, SOPs, statistical analysis plan
 - Companies: Provided restricted access to IPD, study protocols, full study reports
- Access to unpublished data from pharmaceutical companies and independent investigators
- Independence of research of EPO IPD project:
 - Only public funding / no industry funding
 - Power of decision by Steering Committee
- Future research:
 - Analysis of progression-free survival and quality of life
 - Impact of post baseline Hb levels on mortality
 (→ time-dependent covariate)

Acknowledgements

- Steering Committee: Julia Bohlius, Michael Clarke, Matthias Egger, Andreas Engert, Maryann Napoli, Margaret Piper, Dirk Rades, Martin Schumacher, Jerome Seidenfeld, Mark Somerfield, David Steensma
- Statistical Analysis Team: Julia Bohlius, Corinne Brillant, Matthias Egger, Kurt Schmidlin, Martin Schumacher, Guido Schwarzer, Sven Trelle, Marcel Zwahlen
- Reviewer for study selection and data extraction: Julia Bohlius, Sabine Kluge, Olaf Weingart
- Advisory Board: Jesse Berline for J&J PRD, Peter Bowers for J&J PRD, Ulrich Burger for F. Hoffmann-La Roche Ltd, Tom Lillie for Amgen, Volker Moebus for the AGO ETC trial, Isabelle Ray-Coquard for the ELYPSE-4 study, Armin Scherhag for F. Hoffmann-La Roche Ltd, Gillian Thomas for the GOG-191 study, Dianne Tomita for Amgen, Michael Untch for the AGO PREPARE study
- Data management of original study data for the meta-analysis: Shamshad Ali for the GOG-191 study, Sophie Dussart for the ELYPSE-4 study, Alex Fleishman and the Biometrics and Data Management staff at Amgen, Viktor Nendel and the Biometrics and Data Management staff at F. Hoffmann-La Roche Ltd, Steven Sun and the Biometrics and Data Management staff at J&J PRD
- **Funding:** German Federal Ministry of Education and Research, Germany (# 01KG0611), OncoSuisse, Switzerland (# OCS-02146-10-2007)

- Project leadership: Cochrane Haematological Malignancy Group (CHMG), Cologne, Germany (Prof. A. Engert, Dr. J. Bohlius)
- Meta-analyses based on aggregated/study-level data
- Bohlius et al. (2005), JNCI:
 - 27 trials (3287 patients, published 01/1985 12/2001)
 - Red blood cell transfusion: RR=0.67 [0.62; 0.73], 25 trials, n=3069 RR=1.58 [0.95; 2.66], 12 trials, n=1738 Thromboembolic events:

 - Overall survival: HR=0.84 [0.69; 1.02], 19 trials, n=2805
 - Overall survival (adjusted): HR=0.81 [0.67; 0.99], 19 trials, n=2805
- Bohlius et al. (2006), JNCI:
 - 57 trials (9353 patients, published 01/1985 04/2005)
 - Red blood cell transfusion: RR=0.64 [0.60; 0.68], 42 trials, n=6510 Thromboembolic events: RR=1.67 [1.35; 2.06], 35 trials, n=6769

 - Overall survival: HR=1.08 [0.99; 1.18], 42 trials, n=8167

Sensitivity analyses: On-study mortality

-		
	n	ESA vs Control HR [95% CI]
All cancer patients Excluding Leyland-Jones 2005 Aapro et al. 2008, BJC ¹	13933 12994 2297	1.17 [1.06-1.30] 1.13 [1.02-1.27] 1.13 [0.87-1.46]
Chemotherapy trials Excluding Leyland-Jones 2005 Ludwig et al. 2009, JCO ²	10441 9502 2122	1.10 [0.98-1.24] 1.03 [0.90-1.18] 1.11 [0.84-1.47]

¹ Chemo- and/or radiotherapy or surgery, placebo or standard therapy

² Chemotherapy only, placebo controlled only