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Introduction to Subgroup Analysis
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Introduction

For biological reasons treatments may be more effective in
some populations of patients

Important baseline factors
* Risk factors

* Genetic factors

» Demographic factors
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Introduction
Various Aspects

(Focus of this talk in bold )
Definition of subgroups

* Prospective vs. retrospective definition
e “small” vs. very large number of subgroups
(a few important factors that are considered predictive

vs. data-mining)
Safety vs. efficacy

Testing (default “decision-making”) vs. estimation

(inference)
One trial vs. multiple trials
Frequentist vs. Bayesian
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Example 1
Data from one study

Subgroups by ECG, LDL-C, baseline risk
{stratified analyses)
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(Davis & Leffingwell, Contr Clin

Trials 1990)
Endpoint

« Coronary Heart Disease
(CHD) death and Myocardial
Infarction

Comparison
« diet + placebo (C)
« diet + cholestyramine (T)

Subgroups defined by baseline
characteristics

« ECG (positive/negative)
« LDL cholesterol (high/low)

« Risk score (including systolic
blood pressure, age, smoking)
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Example 2 (case study)

Data from several studies
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* Subgroup analysis in a
meta-analytic context

« Efficacy comparison T
vs.C

» Data from 7 studies

* 8 subgroups

« defined by 3 binary base-
line covariates A, B, C

* A, B, C high (+) or low (-)

« describing burden of
disease (BOD)

* Idea: patients with
higher BOD at baseline
show better efficacy
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Approaches

Testing / Estimation

Testing

« typical for pre-planned analysis, pre-specified subgroups

(Model-based) estimation
* retrospective analyses
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Testing Approaches

Subgroup analysis formulated as a testing problem

 Standard approach
- test for treatment by subgroup interaction
- If significant: proceed to estimate within subgroup effects

- Pocock et al. (StatMed 2002), Assman et al. (Lancet 2000), Brookes et al.
(J of Clin Epi 2004)

* What's often done

- Fully stratified analysis: estimates for treatment effects in each subgroup
without any reference to the data in other subgroups

- This is problematic. Berry (Biometrics 1990), Grouin et al. (JBS 2005)
* Recommendations
- Careful pre-planning of subgroup analysis

- Post-hoc analyses should address multiplicity problem
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Testing approaches
Issues

Post-hoc analyses suffer from
» small sample sizes due to splitting up the data into subgroups

» multiplicity problem

This leads to
* low power and

- even wider confidence intervals (due to multiplicity adjustments)
compared to fully stratified analysis
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Estimation Approaches

Various approaches to estimate subgroup effects

Instead of looking at subgroups in a fully stratified way, it is
assumed that information from other subgroups carries
information about subgroup(s) of interest

Subgroup effects 8, 8,,..., &; are related/similar to a
certain degree.

Requirement: a reasonable assumption/model
Under such assumptions

« results will be different from fully stratified analysis

* due to borrowing from the other subgroups

* - modified point estimates

» — generally shorter confidence intervals
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Shrinkage
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Shrinkage

Y, Y, Yg Y. Yg
Data from G subgroups

6,.... 0

effects
?

Unknown ‘Relationship/Similarity’

@ @ Range of possibilities:

= from same effects

= ... to very different effects
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Shrinkage

The simplest model

= G subgroups with effects 4, 6,,..., &5

= Why shrinkage?
* Estimates are typically more spread out than true effects 6, 6,,..., 6
» Extreme stratified subgroups estimates are typically too extreme

= Simple shrinkage for subgroup analyses
* Yy~ N(g,84),9=1,...G
©8,6,..,6;~NWunr

» See Louis (JASA 1984), Davies & Leffingwell (Contr Clin Trials 1990),
both using empirical Bayes techniques

* Inference
« Classical random-effects analyses
« Empirical Bayes
* Fully Bayesian (with priors for pand 7)
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Shrinkage

Random effects: sampling interpretation

Model for similarity: &,,..., 5~ F
where F is an unknown distribution, e.g. N( W, 72)

Sampling interpretation
True parameters are a sample from an underlying “population”
This is somewhat difficult to justify:

Are the selected subgroups a sample from a population of
subgroups?

15 | Subgroup analysis using Bayesian hierarchical models: a case study | June 2009 U NOVARTIS

Shrinkage

Random Effects: exchangeability interpretation

Model for similarity: &,,..., 65~ F
Exchangeability interpretation

assumption that the joint probability distribution of 4,,..., &; is
invariant under permutations of the indices 1,...,G

(This requires the willingness to talk about the parameters in a fully

probabilistic way!)

de Finetti Theorem: there is a distribution F such that
6,....0,~F@) . ie, ,..., g areiid given F(s), and 17 ~ P (“prior”)

There is no sampling interpretation needed here, but an indifference
statement about the underlying parameters. A judgment call!

Of course we don’'t know what F is!

Note:
we constantly use exchangeability assumptions about observations
for parameters this is less common (except in Bayesian framework)
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Shrinkage
Example 1 (Davis & Leffingwell 1990)

CHD deaths and myocardial infarction by subgroup and treatment group

ECG LDL.Crisk rC nCrT nT pC pT 10gOR | 0gOR se
1 + HGHHGH 7 23 5 26 30.4%19.2%-0.608 0.673
2 + HGH low 6 32 4 38 18.8% 10.5%-0.674 0. 696
3 + JlowHGH 3 19 1 21 15.8% 4.8%-1.322 1.202
4 + low low 3 30 5 34 10%14.7% 0.439 0.778
5 - HGHHGH30 265 38 266 11.3% 14.3% 0.267 0.261
6 - HGH low 73 665 46 664 11% 6.9% -0.505 0.197
7 - | ow H GH 25 268 21 260 9.3% 8.1%-0.158 0. 310
8 - low |ow 40 598 35 597 6.7% 5.9%-0.141 0.239

logOR = log( rT/(nT-rT) ) — log( rC/(nC-rC) )
logOR.se = (1/rT + 1/(nT-rT) + 1/rC + 1/(nC-rC) )*2
From Davis & Leffingwell (Contr Clinical Trials, 1990)

Note: in the paper a relative risk (using logrank statistic) was used instead
of the odds-ratio!
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Simple Shrinkage

Example 1 (Davis & Leffingwell 1990): simple shrinkage estimates

Subgroups by ECG, LDL-C, baseline risk
(stratified analyses) Subgroups by ECG, LDL-C, baseline risk
(stratified analyses and shrinkage estimates)
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Models
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Simple Shrinkage Model

Standard Calculus for Normal Data (known 1)

Data Yy ~N(99'Ss) 9=1..G
Parameters 8,....0; ~ N(u,7%)

Shrinkage: estimate for each study-specific effect g is

- aweighted average of study-specific and overall mean estimate

~ n DA A _ _
6,=(-B,)Y,+B 2 g="8"98  wy=(§;+7°)"
QWQ
- with shrinkage factor
S
g~ Sg +72

- Small standard error (high precision) = little shrinkage
- =0 (homogeneity) = B = 1 = complete shrinkage (pooling)
- 1 verylarge = B =0 = no shrinkage (complete stratification)
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Simple Shrinkage Model

Bayesian Formulas for Normal Data (known 7), uniform prior for pu

overall mean p is normally distributed with

>z WY 1
E(uIY,7) == Var(u|Y, 1) =

oWy 9''g
Subgroup effect g, is normally distributed with
E(Gg Y, 1) =1~ Bg)Yg + BgE(,u Y, 7)

Var(6, |Y,7) =B {r? + B\Var (u|Y, 1)}
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Issues

Even inference for the simplest model is challenging
because 7 is unknown

« Classical ways to address this

» Bayesian approach requires a prior for 7. Inference is
automatic/unique, but prior sensitivity should be assessed.

Exchangeability for subgroup effects may be questionable

« In particular if subgroups are defined by covariates that are thought
to be predictive of the effects

* We will look at the case of 3 binary covariates A,B,C, defining 8
subgroups
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General interaction model for 3 binary covariates

Effect for subgroup g

6,=1+
¥l (A=high) + y,1 (B = high) + y,1 (C = high)
+4,1 (A=B=high) +J,I (A=C = high) + 4,1 (B =C = high)
+al (A=B=C =high)

- 1 fixed baseline (all covariates = 0)

- y first-order interactions

* & second-order interaction

* o third-order interaction

 Note: the full model without any structure on parameters corresponds
to a fully stratified analysis (just a reparameterization!)
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The Dixon-Simon Model
Dixon & Simon, Biometrics, 1990

Effect for subgroup g

6,=1+
¥l (A=high) + y,1 (B = high) + y,1 (C = high)
+ 9,1 (A=B=high) +J,I (A=C =high) + d,| (B=C = high)
+al (A=B=C=high)

* T fixed baseline

* Dixon-Simon: g, =3, =& =a=0

* W, ¥ ¥, ~ Normal(0, «#) with prior on w

Dixon-Simon Model
6, =7+ y,1 (A=high) + y,| (B = high) + 1 (C = high)
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Example 1
Simple shrinkage and Dixon-Simon model

Subgroups by ECG, LDL-C, baseline risk
(simple shrinkage (blue) and Dixon-Simon (red))

+HIGH HIGH —_—
———
+HIGH low —_—
——
+ low HIGH —_—
———
+ Lo lowi —_—
- HIGH HIGH —_—
J— —
- HIGH low —_—
J———
- low HIGH —_—
p—a
- low low —_—
J———

I T T T T 1
3 2 1 0 1 2 3
logOR
25 | Subgroup analysis using Bayesian hierarchical models: a case study | June 2009 U NOVARTIS

Extension of the Dixon-Simon Model

Effect for subgroup g

6, =1+
¥l (A= high) + y,I (B = high) + y,I (C = high)
+0,l (A=B=high) +J,I (A=C =high) + J,I (B =C = high)
+al (A=B=C =high)

« 1 fixed baseline

* W, ¥ ¥, ~ Normal(0, w?)

* J, &, &~ Normal(0,w?)

* a~ Normal(0, w?)

* with priors on @, w, W,

* Possible constraints: ¢} > w, > w, (lower order interactions typically
larger than higher order interactions)
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Sargent & Hodges Model

... for subgroups defined by 3 binary covariates

SANOVA (Smooth ANOVA) approach
» Hodges, Sargent, Cui, Carlin (Technometrics 2007)

Effect for subgroup g
6,=1+
¥l (A=high) + y,1 (B = high) + y,1 (C = high)
+31 (A=B=high) +J,I (A=C = high) + 4,1 (B = C = high)
+al (A=B=C =high)
 Each of the 8 regression coefficients assumed independent
Normal(0,?), j=1,...,8

* But the estimated variance components will be strongly driven by the
hyperpriors
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Extensions to multiple studies
... for subgroups defined by 3 binary covariates

Effect for subgroup g in study s
O =1+
y.I (A= high) + y,1 (B = high) + y,I (C = high)
+9,1 (A=B=high) +J,I (A=C =high) + J,| (B=C = high)
+al (A=B=C =high)
+ A,

- with exchangeable study effects A, ~ Normal(0,#?), s=1,...,S

e ... and various possible assumptions about the other parameters
(Dixon-Simon, extended Dixon-Simon, ...)
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Case Study
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Case study

Results

Separate analyses for two trials
* “small” trial 1
* “large” trial 4

Meta-analytic subgroup analyses: all seven trials

Results for two models are shown
« Dixon-Simon: exchangeable 1st order terms

- extended Dixon-Simon: exchangeable 1st and higher order
interaction terms
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Case Study
... Data for small and large study (study 1 and study 4)

Fully stratified
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Fully stratified
Study 1 Study 4
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Case Study

Two subgroup analyses for Study 1

Fully stratified

Study 1
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Case Study

Two subgroup analyses for Study 4
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Fully stratified Dixon-Simon
y Extended Dixon-Simon
Study 4 Study 4
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Case Study
Two meta-analytic subgroup analyses
Study 1 Study 2 Study 3 Study 4
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Concluding Remarks
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Concluding Remarks

Post-hoc subgroup analyses with a small number of
subgroups defined by clinically important baseline factors

Testing approaches have clear limitations due to small
sample sizes and multiplicity problems

Inferential/estimation approaches based on shrinkage
ideas are more promising

Required: a “model” for the similarity of subgroup effects
 Simple shrinkage model
« Dixon-Simon model or extended version(s)

Examples: different shrinkage models lead to similar
answers

36 | Subgroup analysis using Bayesian hierarchical models: a case study | June 2009 U NOVARTIS

18



Concluding Remarks

Further considerations
* Model diagnostics: residual analyses, posterior predictive checks

» Model selection (e.g. deviance information criterion DIC, Spiegelhalter
et al, JRSS(B), 2002)

* Recombination of subgroups to larger subgroups

« Computations: e.g. WinBUGS
BUT!

 Deciding on an analysis after looking at the data is “dangerous,
useful, and often done”; Jack Good (Good Thinking, 1983)

* Recommendation: pre-define subgroups and use estimation
approach based on shrinkage methods for the analysis

Manuscript in preparation
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