

Approaches Testing / Estimation	
 Testing typical for pre-planned analysis, pre-specified subgroup 	oups
 (Model-based) estimation retrospective analyses 	
8 Subgroup analysis using Bayesian hierarchical models: a case study June 2009	U NOVARTIS

Shrinkage The simplest model					
• G subgroups with effects $\theta_1, \theta_2, \dots, \theta_G$					
Why shrinkage?					
• Estimates are typically more spread out than true effects $\theta_1, \theta_2,, \theta_G$ • Extreme stratified subgroups estimates are typically too extreme					
Simple shrinkage for subgroup analyses					
• $Y_g \sim N(\theta_g, s_g^2), g = 1,, G$					
• $\theta_1, \ \theta_2, \dots, \ \theta_G \sim N(\mu, \tau^2)$					
 See Louis (JASA 1984), Davies & Leffingwell (Contr Clin Trials 1990), both using empirical Bayes techniques 					
Inference					
 Classical random-effects analyses 					
 Empirical Bayes 					
• Fully Bayesian (with priors for μ and $ au$)	, I				
14 Subgroup analysis using Bayesian hierarchical models: a case study June 2009	() NOVARTIS				

Shrinkage Random Effects: exchangeability interpretation
• Model for similarity: $\theta_1, \ldots, \theta_G \sim F$
 Exchangeability interpretation
 assumption that the joint probability distribution of θ₁,, θ_G is invariant under permutations of the indices 1,,G
(This requires the willingness to talk about the parameters in a fully probabilistic way!)
• <i>de Finetti Theorem</i> : there is a distribution <i>F</i> such that
$\theta_1, \dots, \theta_G \sim F(\eta)$, <i>i.e.</i> , $\theta_1, \dots, \theta_G$ are iid given $F(\eta)$, and $\eta \sim P$ ("prior")
 There is no sampling interpretation needed here, but an indifference statement about the underlying parameters. A judgment call!
 Of course we don't know what F is!
Note:
 we constantly use exchangeability assumptions about observations
• for parameters this is less common (except in Bayesian framework) 16 Subgroup analysis using Bayesian hierarchical models: a case study June 2009

Example 1 (Davis & Leffingwell 1990)											
C	CHD deaths and myocardial infarction by subgroup and treatment group										
	ECG	LDL.C	risk	rC	nC	rT	nT	pC	рТ	logOR	logOR.se
1	+	HIGH	HIGH	7	23	5	26	30.4%	19.2%	-0.608	0.673
2	+	HIGH	low	б	32	4	38	18.8%	10.5%	-0.674	0.696
3	+	low	HIGH	3	19	1	21	15.8%	4.8%	-1.322	1.202
4	+	low	low	3	30	5	34	10%	14.7%	0.439	0.778
5	-	HIGH	HIGH	30	265	38	266	11.3%	14.3%	0.267	0.261
б	-	HIGH	low	73	665	46	664	11%	6.9%	-0.505	0.197
7	-	low	HIGH	25	268	21	260	9.3%	8.1%	-0.158	0.310
8	-	low	low	40	598	35	597	6.7%	5.9%	-0.141	0.239
Fi	$logOR = log(rT/(nT-rT)) - log(rC/(nC-rC))$ $logOR.se = (1/rT + 1/(nT-rT) + 1/rC + 1/(nC-rC))^{1/2}$ From Davis & Leffingwell (Contr Clinical Trials, 1990)										
N	Note: in the paper a relative risk (using logrank statistic) was used instead of the odds-ratio!										
17	17 Subgroup analysis using Bayesian hierarchical models: a case study June 2009								U NOVARTIS		

