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Flexible designs

Flexible designs allow for mid-trial design modifications based
on all internal and external information gathered at interim
analyses without compromising the type I error rate.
For a control of the type I error rate, the design modifications
need not be specified in advance.

Examples for mid-trial design modifications:

Adaptation of the sample sizes, dropping (or adding) study
doses, adapting the number of interim analyses, decision
boundaries, test statistics, the endpoints, the study goal
(non-inferiority and superiority), the multiple testing strategy,
. . . .
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Pre-specified Adaptivity versus Flexibility

Pre-specified adaptivity =

adapting design parameters according to a pre-specified
adaptation rule

Aims: Increasing efficiency by optimizing specific cost functions.
Examples: Group sequential trials, play-the-winner allocation
rules, . . .

Flexibility (“unscheduled” adaptivity) =

adapting design parameters without a (complete) specification
of the adaptation rule
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Flexibility

Aims of flexibility:

I Dealing with the unexpected.

I Dealing with the expected unpredictability of clinical
trials.

I Improving the “quality” of the decision process as a
whole in an environment where the parameter
assumptions and also the weighting of gains and
costs are unclear a priori and can change in the
course of the trial.
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Flexible Two Stage Tests

Step-wise procedure
Consist of two sequential stages:
Stage 1 (e.g. Phase II part) and Stage 2 (e.g. Phase III part)

Stage 1 and Stage 2 data are from two independent cohorts.

Adaptivity
The design of Stage 2 (sample sizes, statistical test, . . . ) can
be chosen based on the data of Stage 1 as well as any other
internal or external information.

Flexibility
For a control of the type I error rate, one need not pre-specify
how the Stage 1 data determine the design of Stage 2.
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Flexible two stage combination tests

Notation: p and q the p-values from stage 1 and 2 for

H0 : θ ≤ 0 versus H1 : θ > 0

p and q are independent under H0.

Two stage combination test: Prefix a monotone combination
function C(p, q) and rejection bounds c and α1.

We reject H0 if either p ≤ α1 (stage 1)
or C(p, q) ≤ c (stage 2)

Level condition: We must prefix α1, C(p, q) and c such that

P0({p ≤ α1} ∪ {C(p, q) ≤ c}) = α
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Examples for combination functions

I Fisher’s product test:

C(p, q) = p · q

I Inverse normal method:

C(p, q) = w1 Φ−1(p) + w2 Φ−1(q), w2
1 + w2

2 = 1

Gives a two stage GSD with information times t1 ≤ t2
if w1/w2 =

√
t1/(t2 − t1) and no adaptations are done.
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Estimation

“Corresponding methods to estimate the size of the
treatment effect and to provide confidence intervals
with pre-specified coverage probability are additional
requirements.”

Reflection paper on flexible designs (Draft), EMEA 2006
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Bias of conventional estimates

I Unblinded sample size adaptations may lead to (mean)
biased estimates and invalid confidence intervals.

I Sample size adaptation rule unkown
→ bias and coverage probabilities unknown.
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Confidence intervals for flexible designs

I Duality between confidence sets and significance tests:

confidence set = set of values where significance test accepts

I Flexible confidence interval:
Use flexible tests at level α for all parameter values

I Flexible confidence intervals have coverage probability
≥ 1− α independently of the adaptation rule.

I Overall p-values can be constructed in a similar way.
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Confidence intervals for flexible designs
accounting for stopping rules

Two possible approaches:

I Repeated confidence interval approach:
is very simple; flexibility also with regard to stopping rule;
inevitable price is strict conservatism.

I Exact confidence interval via stage wise ordering:
is more complicated; no flexibility with regard to stopping
rule; exact coverage probability.

Exact confidence interval at level 0.5 gives median
unbiased point estimate which lies in the interior of
the exact 95%-confidence interval.
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Chapter 2: Repeated Confidence Intervals

(LEHMACHER & WASSMER, 1999; BRANNATH ET AL. 2002,

LAWRENCE & HUNG, 2003; PROSCHAN ET AL., 2003)
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Repeated confidence intervals

Duality between hypothesis tests and confidence sets:
p∆ stage 1 and q∆ stage 2 p-values for H0,∆ : θ ≤ ∆.

p∆ and q∆ independent under H0,∆ and increasing in ∆.

Two stage combination test for H0,∆: Use for all ∆ the same
combination test.

We reject H0,∆ if either p∆ ≤ α1 (stage 1)

or C(p∆, q∆) ≤ c (stage 2)

Remark: The rule “p∆ ≤ α1” should not be understood as a
stopping rule, but as rejection rule which we apply at stage 1.
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Lower repeated confidence bounds

Stage 1: Solve the equation p∆ = α1 → δ1 such that

p∆ ≤ α1 ⇐⇒ ∆ ≤ δ1

→ (δ1,∞) one-sided confidence interval at first stage.

Stage 2: Solve C(p∆, q∆) = c → δ2 such that

C(p∆, q∆) ≤ c ⇐⇒ ∆ ≤ δ2

→ (δ2,∞) one-sided confidence interval at second stage.
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Example I

Primary efficacy end point: Infarct size measured by the
cumulative release of α-HDBH within 72 hours after
administration of the drug (area under the curve, AUC).

θ the mean α-HDBH AUC difference between control c and
treatment t, H0 : θ ≤ 0 vs. H1 : θ > 0

Inverse normal combination test:

C(p, q) =
√

0.5 · Φ−1(p) +
√

0.5 · Φ−1(q)

O’Brien and Flemming at one sided level α = 0.025

→ α1 = 0.0026, c = 0.024.
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Example I (cont.)

Stage 1: sample sizes: n1c = 88, n1t = 91,
standard deviation: σ̂1c = 26.0, σ̂1t = 22.5
treatment difference: θ̂1 = 4.0, σθ̂1

= 3.64

p∆ according to t-test for H0 : θ = ∆.

Solving p∆ = 0.0026 −→ classical CI at level 0.0026

δ1 = θ̂1 − tν,0.9974 · σθ̂1
= −6.3

First stage confidence interval is (−6.3,∞)
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Example I (cont.)

Stage 2: sample sizes n2c = 322, n2t = 321,
standard deviations: σ̂2c = 26.1, σ̂2t = 28.5,
treatment difference: θ̂2 = 4.8, σθ̂2

= 2.16

q∆ according to t-test for H0 : θ = ∆ from second stage data.

Solving C(p∆, q∆) = 0.024 numerically −→ δ2 = 0.71

Second stage confidence interval is (0.71,∞)
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Example I (cont.): Determination of δ2
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Properties of repeated confidence bounds

I One need not pre-specify the adaptation and stopping rule
to keep the nominal coverage probability.

I Price for the flexibility with regard to stopping rule is strict
conservatism: we must control the level for the worst case
rule, also when actually not following this rule.

I H0 is rejected with the combination test iff δL > 0.
I The first stage bound δ1 is the classical confidence bound

at level α1.
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Normal approximations and inverse normal
method (Lehmacher and Wassmer, 1999)

If the stage wise estimates θ̂i (i = 1, 2) for the treatment effect
are asymptotically independent and normal with mean
treatment effect ∆ and variance σ2

θ̂i
= I−1

1 , then

p(∆) = 1−Φ(
√

I1 ·(θ̂1−∆)) and q(∆) = 1−Φ(
√

I2 ·(θ̂2−∆))

are approximate independent p-values for H0,∆ : θ ≤ ∆.

Inverse normal combination function

δ2 = θ̂w−
Φ−1(1− c)

w1 ·
√

I1 + w2 ·
√

I1
, θ̂w =

w1 ·
√

I1 · θ̂1 + w2 ·
√

I2 · θ̂2

w1 ·
√

I1 + w2 ·
√

I2
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Example I with normal approximation

Stage 1: θ̂1 = 4.0, I1 = 0.076

δ1 = 4.0− Φ−1(0.9974) ·
√

I1 = −6.2 (before −6.3)

Stage 2: θ̂2 = 4.8, I2 = 0.215, w1 = w2 =
√

0.5

θ̂w =

√
I1 · θ̂1 +

√
I2 · θ̂2√

I1 +
√

I2
= 4.5

δ1 = 4.5− Φ−1(1− 0.024)

(
√

I1 +
√

I2)
√

0.5
= 0.70 (before 0.71)
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Extensions

I Repeated confidence intervals can be extended to
multistage flexible designs, and can be computed even
after adapting the number of interim looks
( LEHMACHER AND WASSMER, 1999; BRANNATH ET AL., 2002)

I One can incorporate a futility boundary into the dual
combination tests. However, one must carefully account for
the futility bound in the determination of δ2:
One must accept all ∆ for which stage 1 p-value p∆ falls
into stage 1 acceptance region even if the second stage
data suggest rejection of H0,∆.
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Extensions

I We could use different α1 and c for different ∆, however,
one must be careful in our choice in α1 and c in order to
get nested dual rejection regions. (BRANNATH ET AL. 2003)

I Exact confidence intervals and median unbiased point
estimates are available via the stage wise ordering.
(BRANNATH ET AL. 2002)

I Confidence intervals and point estimates for adaptive
GSD’s following the principle of Müller and Schäfer have
been derived only recently.
(METHA, BRANNATH, POSCH AND BAUER 2006; SUBMITTED)
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Two-sided tests and
two-sided confidence intervals at level 2α

I One should not perform combination tests with two-sided
p-values for H0,∆ : θ = ∆:
Interpretation problem if the first and the second stage
estimates point in conflictive directions.

I Solution: Intersection of two one-sided combination tests
and corresponding repeated confidence intervals (one
lower and one upper) each at level α.
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Two-sided confidence intervals at level 2α

I At the first stage we get the classical two-sided interval at
level 2α1.

I With the normal approximation and normal inverse method
we get at the second stage the interval

(θ̂w −
Φ−1(1− c)

w1 ·
√

I1 + w2 ·
√

I2
, θ̂w +

Φ−1(1− c)

w1 ·
√

I1 + w2 ·
√

I2
)

with

θ̂w =
w1 ·

√
I1 · θ̂1 + w2 ·

√
I2 · θ̂2

w1 ·
√

I1 + w2 ·
√

I2
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Confidence intervals for the conditional
error function approach

Conditional error function approach: Prefix a decreasing
conditional error function A(x) and first stage rejection level α1.

Reject H0 if p ≤ α1 (stage 1) or q ≤ A(p) (stage 2).

Equivalent combination test (POSCH & BAUER 1999, WASSMER 1999):

e.g. α1, C(p, q) = q − A(p), and c = 0

→ One can use the same estimation methods as for
combination tests
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Chapter 3: Point Estimation
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Maximum likelihood estimate (MLE)

Assuming normal data and balanced treatment groups the MLE
can be written as

θ̂mle =
I1

I1 + I2
· θ̂1 +

I2
I1 + I2

· θ̂2

(for small effect sizes approximatively also in other cases)

Mean Bias: E∆(θ̂mle −∆) = Cov∆( I1
I1+I2

, θ̂1) (Liu et al. 2002)

One can show that always: |E∆(θ̂mle −∆) | ≤ 0.4 · σ/
√

n1

Variance also depends on (unknown) adaptation/selection rule
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Maximum likelihood estimate (MLE)

Mean bias of MLE for typical examples (qualitatively):
I Stopping with early rejection: the larger the effect size the

smaller the sample size → positive mean bias.
I Stopping for futility: the smaller the effect size the smaller

the sample size → negative mean bias.
I Conditional or predictive power control: the smaller the

effect size the larger the sample size → positive mean bias.
I Selecting promising treatments: the larger the effect size

the larger the sample size → negative mean bias.
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Weighted maximum likelihood estimate

Center of a two sided repeated confidence interval:

θ̂w =
w1 ·

√
I1 · θ̂1 + w2 ·

√
I2 · θ̂2

w1 ·
√

I1 + w2 ·
√

I2

where w1, w2 ≥ 0, w2
1 + w2

2 = 1 are the pre-specified weights.

Properties:
I If recruitment is stopped at stage 1 then θ̂w = θ̂1.
I If recruitment is never stopped at the interim analysis, then

θ̂w is median unbiased, i.e., θ̂w has median ∆.
I Median of θ̂w close to ∆ also if recruitment can be stopped

at interim analysis.
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Cases for which the estimates are similar

The two estimates are equal or differ only slightly if

I recruitment is stopped at the interim analysis;

I recruitment is not stopped at the interim analysis, and

I the first and second stage estimates are similar, θ̂1 ≈ θ̂2;

or
I the sample sizes are (almost) as pre-planned:√

I1/I2 ≈ w1/w2 =
√

t1/(t2 − t1)
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Numerical example

80% - Predictive power rule,
truncated 0.1 · I1 ≤ I2 ≤ 5 · I1.

θ̂w with w2
1 = 0.5

θ̂1 first stage mean diffenrence
horizontal axis: λ1 =

√
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Remarks on Seamless Phase II/III designs

I Start with a number of treatments (doses) and select
treatments and reassess sample sizes at an adaptive
interim analysis.

I Selection rule is typically not fully pre-specified.
I Flexible closed tests provide strong FWER control.

I Repeated confidence interval approach provides univariate
confidence intervals (no multiplicity adjustment).

I Simultaneous confidence intervals which are consistent
with the (multiple) test result may not be available.

I Mean or median unbiased estimates are currently not
available.

I Selection bias can be an additional issue (ongoing
research and discussion).
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Summary

I Univariate confidence intervals are, in general, available for
flexible adaptive designs.

I Using the normal approximation of stage wise estimates
and the inverse normal combination function, we get
explicit (and intuitive) formula for the confidence bounds.

I Maximum likelihood estimate is biased, however, seems to
perform well in terms of the mean square error.

I The weighted maximum likelihood estimate is, in general,
less biased and median unbiased in the case of an
administrative interim look.

I With a stopping rule a median unbiased estimate can be
obtained via the stage wise ordering.
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