Frequentist network meta-analysis using the R package netmeta

Gerta Rücker

Institute for Medical Biometry and Statistics and Cochrane Germany Medical Center - University of Freiburg

ruecker@imbi.uni-freiburg.de

European Statistical Meeting on Evidence Synthesis Bruxelles, November 22, 2016

Starting point: Graph-theoretical methods for network meta-analysis

- Statistical model
- Multi-arm studies
- Drawing the network
- **Ranking treatments**
- Inconsistency diagnostics
- Summary

Graph-theoretical methods for network meta-analysis

- Networks are graphs
 - Nodes are treatments
 - Edges are comparisons between treatments, based on studies
- 'Variances combine like electrical resistances' (Bailey, 2007)
- It is possible to apply methods from electrical network theory to network meta-analysis (Rücker, 2012)

Gerta Rücker Freiburg

R package netmeta

Variances combine like electrical resistances

2

Graph theory

Model

Connection in series Variances in a chain of n – 1 independent comparisons of successive treatments A, B, C,... add:

References

$$V_{A-E} = V_{A-B} + V_{B-C} + V_{C-D} + V_{D-E}$$

$$\frac{1}{V(\bar{x})} = \sum_{k} \frac{1}{V_{k}}$$

0.5

5 6

7

Ranking treatme

nconsistency Summary

References

Terminology in meta-analysis and electrical networks

Meta-analytic network

Electrical network

Treatments $i = 1, \ldots, n$	\iff	Nodes <i>i</i> = 1, , <i>n</i>
Existing comparisons $e = 1, \ldots, m$	\iff	Edges <i>e</i> = 1,, <i>m</i>
Variance V _e	\iff	Resistance R _e
Inverse variance weight $w_e = 1/V_e$	\iff	Conductance 1/R _e
Outcome of treatment i	\iff	Potential at node i
Treatment effect $i - j$	\iff	Voltage at edge <i>i – j</i>
Weighted treatment effect $i - j$	\iff	Current flow at edge $i - j$

- Ohm's law relates treatment effects and weights
- Kirchhoff's current law says how to combine the observed effects
- Kirchhoff's potential law guarantees consistency of the estimated treatment effects over closed circuits
 - Consistency means that the difference between two treatments is always the same, whatever (direct or indirect) path is chosen

Gerta Rücker Freiburg

R package netmeta

Statistical model

Model

$$\hat{m{ heta}} = {m{X}} {m{ heta}}^{ ext{treat}} + \epsilon, \qquad \epsilon \sim N({m{0}}, {m{\Sigma}}),$$

where

- $\hat{\theta}$ is a vector of *m* observed pairwise comparisons with known standard errors $\mathbf{s} = (s_1, s_2, \dots, s_m)$
- **X** is the $m \times n$ design matrix defining the network structure
- θ^{treat} a vector of length *n* (number of treatments)
- Σ is a diagonal matrix whose *i*th entry is s_i^2 .

Note:

- ► If there are K two-arm trials, $\hat{\theta}$ has length K
- ► If there are also multi-arm trials, $\hat{\theta}$ has length $m \ge K$ with *m* denoting the total number of pairwise comparisons

Example network with n = 4 arms

Example network with n = 4 arms

- $\boldsymbol{\theta}^{treat} = (\theta_A, \theta_B, \theta_C, \theta_D)^T$
- K = 5 studies each providing a single pairwise treatment comparison
- m = 5 pairwise treatment comparisons
- Model:

$$\begin{pmatrix} \hat{\theta}_1^{AB} \\ \hat{\theta}_2^{BC} \\ \hat{\theta}_2^{CD} \\ \hat{\theta}_3^{AD} \\ \hat{\theta}_5^{BD} \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} \theta_A \\ \theta_B \\ \theta_C \\ \theta_D \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \end{pmatrix}$$
$$= \mathbf{X} \boldsymbol{\theta}^{treat} + \boldsymbol{\epsilon}$$

References

Model

Estimation under the fixed effect model

- $\mathbf{W} = \text{diag}(1/s_1^2, \dots, 1/s_m^2)$ diagonal matrix (dimension $m \times m$) of inverse variance weights
- Network estimates $\hat{\theta}^{nma}$ estimated by

$$\hat{\boldsymbol{\theta}}^{nma} = \mathbf{H}\hat{\boldsymbol{\theta}}$$

where $\mathbf{H} = \mathbf{X}(\mathbf{X}^{T}\mathbf{W}\mathbf{X})^{+}\mathbf{X}^{T}\mathbf{W}$ is known as the *hat matrix* in regression.

- Interpretation: The network estimates are weighted sums of the observed estimates with weights coming from the rows of H.
- Standard errors calculated from the variance-covariance matrix

$$\widehat{\operatorname{Cov}}\left(\widehat{\boldsymbol{\theta}}^{nma}\right) = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{W}\mathbf{X})^{+}\mathbf{X}^{\mathsf{T}}$$

Heterogeneity/inconsistency measured by generalised Q_{total} statistic

$$\boldsymbol{Q}_{total} = (\hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}^{nma})^{\mathsf{T}} \boldsymbol{\mathsf{W}} (\hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}^{nma})$$

(Jackson et al., 2012; Rücker, 2012; Krahn et al., 2013)

Graph theory Model Multi-arm studies Drawing the network Ranking treatments Inconsistency Summary References

Multi-arm studies: Need to account for correlation

- A study with k arms contributes $\binom{k}{2}$ pairwise comparisons
- ▶ Note: These are correlated, as there are only *k* treatments
 - k 1 independent comparisons
 - k 1 degrees of freedom (*df*)
- ▶ Example *k* = 4: *df* = 3

Adjustment for correlation within multi-arm studies

Standard approach: Reduce dimension

(Lu et al., 2011; Higgins et al., 2012; White et al., 2012; König et al., 2013)

- Based on standard regression methodology
- For each multi-arm study, choose a study-specific reference treatment
- Consider only comparisons to the reference treatment ('basic parameters')

Alternative approach: Reduce weights

(Rücker, 2012; Rücker and Schwarzer, 2014)

- Based on electrical network methodology
- For each multi-arm study, reduce all 'conductances' (weights) by specific factors that must be calculated
- Implemented in the R package netmeta (Rücker et al., 2016)

Comparison of the approaches

Standard approach

- Natural for statisticians with a background in regression analysis
- Alternative approach
 - Natural for scientists coming from graph theory and its applications

Given a four-arm study with six comparisons, we may cut off three of six comparisons: or reduce all weights by 1/2 (in average):

1. Diabetes data

Network of 10 diabetes treatments including 26 studies, where the outcome was HbA1c (measured as mean change or mean post treatment value) (Senn et al., 2013)

2. Smoking cessation data

Network of four interventions for smoking cessation (binary outcome) (Higgins et al., 2012; Dias et al., 2013)

Both examples are part of R package netmeta

How to use R package netmeta: Diabetes data

Make R package netmeta available
install.packages("netmeta")
library(netmeta)

Load diabetes data (Senn 2013), included in R package netmeta
data(Senn2013)
Look at first 5 lines: data are in contrast-based format
head(Senn2013, 5)

studl	treat2	treat1	seTE	TE		##
DeFronzo19	plac	metf	0.1414	-1.90	1	##
Lewin20	plac	metf	0.0992	-0.82	2	##
Willms19	acar	metf	0.3579	-0.20	3	##
Davidson20	plac	rosi	0.1435	-1.34	4	##
Wolffenbuttel19	plac	rosi	0.1141	-1.10	5	##

Summary output of diabetes data

```
# Summarize results
summary(net1)
## Number of studies: k=26
## Number of treatments: n=10
## Number of pairwise comparisons: m=28
##
## Random effects model
##
## Treatment estimate (sm='MD'):
##
     acar
              benf metf migl piog plac rosi sita
## acar . -0.1106 0.2850 0.1079
                                      0.2873 -0.8418 0.3917 -0.2718
## benf 0.1106 . 0.3956 0.2186 0.3979 -0.7311 0.5023 -0.1611
## metf -0.2850 -0.3956 . -0.1770 0.0023 -1.1268 0.1067 -0.5568
## miql -0.1079 -0.2186 0.1770 . 0.1794 -0.9497 0.2837 -0.3797
*** Output truncated ***
##
## Quantifying heterogeneity/inconsistency:
  tau^2 = 0.1087; I^2 = 81.4\%
##
##
## Test of heterogeneity/inconsistency:
       0 d.f. p-value
##
   96.99 \quad 18 < 0.0001
##
```

Forest plot of diabetes data

```
# Look at result
forest(net1, ref = "plac",
    pooled = "random", digits=2,
    smlab = "Random effects model",
    xlab = "HbA1c difference",
    leftlabs = "Contrast to placebo")
```


Graph theory Model Multi-arm studies Drawing the network Ranking treatments Inconsistency Summary References

Smoking cessation data

Load diabetes data (Senn 2013)
data(smokingcessation)

Look at first lines: data are in arm-based format head(smokingcessation)

##		event1	n1	event2	n2	event3	n3	treat1	treat2	treat3
##	1	9	140	23	140	10	138	А	С	D
##	2	11	78	12	85	29	170	В	С	D
##	3	75	731	363	714	NA	NA	А	С	
##	4	2	106	9	205	NA	NA	А	С	
##	5	58	549	237	1561	NA	NA	А	С	
##	6	0	33	9	48	NA	NA	А	С	

The first two trials are three-arm trials

Smoking cessation data

##		TE	seTE	studlab	treat1	treat2	event1	n1	event2	n2
##	1	-1.051293027	0.4132432	1	A	C	9	140	23	140
##	2	-0.128527575	0.4759803	1	А	D	9	140	10	138
##	3	0.922765452	0.3997972	1	С	D	23	140	10	138
##	4	-0.001244555	0.4504070	2	В	С	11	78	12	85
##	5	-0.225333286	0.3839393	2	В	D	11	78	29	170
##	6	-0.224088731	0.3722995	2	С	D	12	85	29	170
##	7	-2.202289286	0.1430439	3	A	С	75	731	363	714
##	8	-0.870353637	0.7910933	4	A	С	2	106	9	205
##	9	-0.415648522	0.1557329	5	А	C	58	549	237	1561

Note the two three-arm studies 1 and 2, now each filling three data lines

Smoking cessation data

```
## Number of studies: k=24
## Number of treatments: n=4
## Number of pairwise comparisons: m=28
##
## Random effects model
##
## Treatment estimate (sm='OR'):
##
         A B
                       C
                             D
## A . 0.6595 0.4803 0.4056
## B 1.5162 . 0.7282 0.6150
## C 2.0822 1.3732 . 0.8446
## D 2.4653 1.6259 1.1840
*** (Output truncated) ***
## Quantifying heterogeneity/inconsistency:
## tau^2 = 0.5989; I^2 = 88.6\%
## Test of heterogeneity/inconsistency:
```

Q d.f. p.value
202.62 23 < 0.0001</pre>

Smoking cessation data

Transparent coloured areas correspond to three-arm studies

```
netgraph(net2, points=TRUE, cex.points=3, cex=1.25, labels=tname)
```


Drawing the network with netmeta

For network visualisation, use function netgraph

- Iteration method implemented in netmeta: Stress algorithm (Kamada and Kawai, 1989; Hu, 2012, related to multi-dimensional scaling)
- Various starting (also random) layouts available
- Iteration steps visible/printable, if desired
- Variable choice of scale, node size, line width, colours, highlighting
- Coloured polygons may represent multiarm studies (where transparent colours are available)

Drawing the network with netmeta: Diabetes data

Drawing the network with netmeta: Diabetes data

Ranking treatments

Bayesian framework:

Derive ranking probabilities for each treatment from the posterior distributions

- Treatments may be ranked by the surface under the cumulative ranking curve (SUCRA) (Salanti et al., 2011)
- Frequentist framework:

We introduced a quantity, called P-score, as an analogue to SUCRA (Rücker and Schwarzer, 2015)

Example: Diabetes data

Surface under the cumulative ranking curve (SUCRA) for diabetes data (produced with WinBUGS and R)

Model

Ranking treatments Inconsistency

Ranking treatments using P-scores: Diabetes data

- P-scores allow ranking the treatments on a continuous 0-1 scale
- Based on frequentist point estimates and standard errors
- Frequentist analogue to SUCRA (Rücker and Schwarzer, 2015)

```
# Rank treatments
# Small values are "good" here (this is the default), otherwise "bad"
netrank(net1, small.values = "good")
##
       P-score
## rosi 0.8934
## metf
        0.7818
## piog 0.7746
## migl 0.6137
## acar
        0.5203
## benf 0.4358
## vild 0.4232
## sita
        0.3331
## sulf 0.2103
## plac
        0.0139
```

consistency Summary R

Ranking treatments using P-scores: Diabetes data

Compare forest plot, point estimates, SUCRA values and P-scores

Inconsistency diagnostics

Designs in network meta-analysis

- A design is each combination of treatments within a study in a network meta-analysis
 - Example: For three treatments A, B, C, the possible designs are A : B, A : C, B : C, A : B : C
 - For *n* treatments the maximum number of designs is $2^n n 1$
 - Not all these need be present in a given network meta-analysis
 - ► In a pairwise meta-analysis, all trials have the same design A : B

Clinical context

- Example: Studies with design A : C might differ to studies with design A : B or A : B : C in that they include patients who cannot be randomised to B
- Heterogeneity between designs is plausible

Decomposition of the heterogeneity statistic

Total Q statistic

$$\boldsymbol{Q}_{total} = (\hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}^{nma})^{\mathsf{T}} \boldsymbol{\mathsf{W}} (\hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}^{nma})$$

Krahn et al. (2013):

- Q can be decomposed into
 - a part coming from within designs (heterogeneity between studies of the same design)
 - a part coming from between designs (inconsistency between studies of different designs)
- Q can be decomposed into parts coming from each design
- Q can be decomposed into parts coming from each study

Model Multi-arm studies Drawing the network Ranking treatments Inconsistency

Decomposition of Q: Diabetes data

```
# Decompose total Q statistics into parts from designs
decomp.design(net1)
```

```
## 0 statistics to assess homogeneity / consistency
##
##
                      Q df p.value
##
  Whole network 96.99.18 < 0.0001
##
  Within designs 74.46 11 < 0.0001
  Between designs 22.53 7
                             0.0021
##
##
##
  Design-specific decomposition of within-designs Q statistic
##
##
           Design
                      Q df p.value
        acar:plac 0.00
                        0
##
        acar:sulf 0.00 0
##
##
        benf:plac 4.38 1 0.0363
        metf:piog 0.00 0
##
##
        metf:plac 42.16 2 < 0.0001
##
        metf:rosi 0.19 1
                             0.6655
        metf:sulf 0.00
##
                        0
***
    (Output truncated) ***
##
    acar:metf:plac 0.00 0
```

Decomposition of Q: Diabetes data

```
# Decompose total Q statistics into parts from designs
decomp.design(net1)
```

```
## Between-designs 0 statistic after detaching of single designs
##
##
   Detached design Q df p.value
##
         acar:plac 22.44 6 0.001
         acar:sulf 22.52 6 0.001
##
##
         metf:piog 17.13 6 0.0088
##
         metf:plac 22.07 6 0.0012
##
         metf:rosi 22.52 6 0.001
         metf:sulf 7.51
                            0.276
                                      ***
##
                         6
##
         piog:plac 17.25 6 0.0084
##
         piog:rosi 22.48 6
                           0.001
##
         plac:rosi 16.29
                         6
                           0.0123
         rosi:sulf 6.77 6 0.3425
                                      ***
##
##
    acar:metf:plac 22.38 5
                             0.0004
```

Explanation: Detaching a design means relaxing the consistency assumption for this design. If Q decreases markedly after detaching a design (*** added for the purpose of this talk), we conclude that this design contributed to between-design inconsistency. If Q does not decrease markedly, the design is not thought to contribute to between-design inconsistency.

Net heat plot (Krahn et al., 2013): Diabetes data

netheat(net1)													
	mett:sulf	rosi:sulf	metf:piog	piog:plac	plac:rosi	mett:plac	acar:plac	acar:sulf	acar:metf_acar:metf:pla	acar:plac_acar:metf:pla	metf:rosi	piog:rosi	
metf:sulf										-			8
rosi:sulf													
metf:piog	-	-								-			6
piog:plac													
plac:rosi												-	4
metf:plac													4
acar:plac			н.										
acar:sulf										-			2
acar:metf_acar:metf:plac													
acar:plac_acar:metf:plac													0
metf:rosi													
piog:rosi	-												-2

Gerta Rücker Freiburg

R package netmeta

Net heat plot (Krahn et al., 2013)

- ► Areas of grey squares ■: indicate the contribution from the treatment comparison in the column to the treatment comparison in the row
- Colours on the diagonal represent the inconsistency contribution of the corresponding design (red means large)
- Colours on the off-diagonal associated with the change in inconsistency between direct and indirect evidence in a network estimate in the row after relaxing the consistency assumption for the effect of one design in the column
 - Blue indicates that the evidence of the design in the column supports the evidence in the row
 - Red indicates that the evidence of the design in the column contrasts to the evidence in the row
- Largest inconsistency contribution by the metf:sulf and rosi:sulf designs (red squares in top left corner)

Summary

R package netmeta provides

- flexible data entry (pairwise)
- fixed / random effects model (netmeta)
- appropriate incorporation of multi-arm trials
- forest plots (forest)
- network graphs (netgraph)
- ranking of treatments (netrank)
- inconsistency diagnostics (decomp.design, netheat)

Currently not available: Meta-regression

See book Schwarzer et al. (2015)

References

- Bailey, R. A. (2007). Designs for two-colour microarray experiments. *Applied Statistics-journal of the Royal Statistical Society Series C*, 56(4):365–394.
- Cipriani, A., Furukawa, T. A., Salanti, G., Geddes, J., Higgins, J., Churchill, R., Watanabe, N., Nakagawa, A., Omori, I., McGuire, H., Tansella, M., and Barbui, C. (2009).
 Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis. *Lancet*, 373(9665):746–758. doi: 10.1016/S0140-6736(09)60046-5.
- Dias, S., Welton, N. J., Sutton, A. J., Caldwell, D. M., Lu, G., and Ades, A. E. (2013). Evidence synthesis for decision making 4: Inconsistency in networks of evidence based on randomized controlled trials. *Medical Decision Making*, 33:641–656. doi:10.1177/0272989X12455847.
- Higgins, J. P. T., Jackson, D., Barrett, J. K., Lu, G., Ades, A. E., and White, I. R. (2012). Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. *Research Synthesis Methods*, 3(2):98–110.
- Hu, Y. (2012). Algorithms for visualizing large networks. In Naumann, U. and Schenk, O., editors, *Combinatorial Scientific Computing*, pages 525–549. Chapman and Hall/CRC Computational Science, Boca Raton, London, New York. ISBN 9781439827352.
- Jackson, D., White, I. R., and Riley, R. D. (2012). Quantifying the impact of between-study heterogeneity in multivariate meta-analyses. *Statistics in Medicine*, 31(29):3805–3820.

Graph theory Model Multi-arm studies Drawing the network Ranking treatments Inconsist

nts Inconsistency Summary References

- Kamada, T. and Kawai, S. (1989). An algorithm for drawing general undirected graphs. *Information Processing Letters*, 31(1):7–15.
- König, J., Krahn, U., and Binder, H. (2013). Visualizing the flow of evidence in network meta-analysis and characterizing mixed treatment comparisons. *Statistics in Medicine*, 32(30):5414–5429. doi: 10.1002/sim.6001.
- Krahn, U., Binder, H., and König, J. (2013). A graphical tool for locating inconsistency in network meta-analyses. *BMC Medical Research Methodology*, 13(1):35.
- Lu, G., Welton, N. J., Higgins, J. P. T., White, I. R., and Ades, A. E. (2011). Linear inference for mixed treatment comparison meta-analysis: A two-stage approach. *Research Synthesis Methods*, 2(1):43–60.
- Rücker, G. (2012). Network meta-analysis, electrical networks and graph theory. *Research Synthesis Methods*, 3(4):312–324.
- Rücker, G. and Schwarzer, G. (2014). Reduce dimension or reduce weights? Comparing two approaches to multi-arm studies in network meta-analysis. *Statistics in Medicine*, 33:4353–4369. DOI: 10.1002/sim.6236.
- Rücker, G. and Schwarzer, G. (2015). Ranking treatments in frequentist network meta-analysis works without resampling methods. *BMC Medical Research Methodology*, 15(1):58. doi: 10.1186/s12874-015-0060-8.
- Rücker, G., Schwarzer, G., Krahn, U., and König, J. (2016). netmeta: Network meta-analysis using frequentist methods. R package version 0.9-1.

Salanti, G., Ades, A. E., and Ioannidis, J. P. (2011). Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. *Journal of Clinical Epidemiology*, 64(2):163–171. doi: 10.1016/j.jclinepi.2010.03.016.

Schwarzer, G., Carpenter, J. R., and Rücker, G. (2015). *Meta-Analysis with R.* Use R! Springer International Publishing, Switzerland.

Senn, S., Gavini, F., Magrez, D., and Scheen, A. (2013). Issues in performing a network meta-analysis. *Statistical Methods in Medical Research*, 22(2):169–189. Epub 2012 Jan 3.

White, I. R., Barrett, J. K., Jackson, D., and Higgins, J. P. T. (2012). Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. *Research Synthesis Methods*, 3(2):111–125.

Gerta Rücker Freiburg

R package netmeta

Graph theory Model Multi-arm studies Drawing the network Ranking treatments Inconsistency Summary References

Appendix: A proof that SUCRA and P-score are the same

We assume the true probabilities as known. If R(i) = k means that treatment i has rank k, we have

$$P_{ij} = \sum_{k=1}^{n-1} \sum_{l=k+1}^{n} P(R(i) = k \wedge R(j) = l)$$

and

$$(n-1)SUCRA(i) = \sum_{r=1}^{n-1} F(i,r) = \sum_{r=1}^{n-1} \sum_{k=1}^{r} P(i,k) = \sum_{k=1}^{n-1} \sum_{r=k}^{n-1} P(i,k) = \sum_{k=1}^{n-1} (n-k)P(i,k)$$

It follows

$$\sum_{j=1}^{n} P_{ij} = \sum_{j=1}^{n} \sum_{k=1}^{n-1} \sum_{l=k+1}^{n} P(R(i) = k \land R(j) = l) = \sum_{k=1}^{n-1} \sum_{l=k+1}^{n} \sum_{j=1}^{n} P(R(i) = k \land R(j) = l)$$
$$= \sum_{k=1}^{n-1} \sum_{l=k+1}^{n} P(i,k) = \sum_{k=1}^{n-1} (n-k)P(i,k) = (n-1)SUCRA(i)$$

and thus

$$\bar{P}_i = \frac{1}{n-1} \sum_{j=1}^n P_{ij} = SUCRA(i)$$

which is what we wanted to prove. Note: For n > 2, neither ranking probabilities P(i, k) nor probabilities P_{ij} can be uniquely determined from \overline{P}_i or SUCRA(*i*).

Gerta Rücker Freiburg

R package netmeta