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1. Introduction

Meta-analysis

e Combine results from several trials / studies
e Mostly clinical trials
e Individual patient data (IPD) or treatment summaries
e Two modelling approaches:
(1) Model for contrasts with baseline treatment per trial
(2) Two-way ANOVA model for trial x treatment classification

e Option (1) most common; but we think option (2) is much simpler

= compare both modelling options

— investigate when they are equivalent
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1. Introduction

Table 1. Smoking Cessation Rates (rix/ni) (Hasselblad 1998)

Individual Group

Study  Nocontact Self-help counseling counseling
Baseline number (A) (B) (C) (D)
Ga 1 9/140 23/140 10/138
Gig 2 11/78 12/85 29/170
Ga) 3 79/702 77/694

4 18/671 21/535

5 8/116 19/146

6 75/731 363/714

7 2/106 9/205

8 58/549 237 /1,561

9 0/33 9/48

10 3/100 31/98

11 1/31 26/95

12 6/39 17/77

13 95/1,107 134/1,031

14 15/187 35/504

15 78/584 73/675

16 69/1,177 54,/888

17 64,/642 107/761

18 5/62 8/90

19 20/234 34 /237

20 0/20 9/20
Gg 21 20/49 16/43

22 7/66 32/127
Gic) 23 12/76 20/74

24 9/55 3/26

ClI orL, orualrie=i Anlicuu, c.c INvveliwel cviv

Example 1:
Lu & Ades (2006) JASA
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1. Introduction

Network meta-analysis

e More than two treatments tested in combined trials

e Need to combine direct and indirect evidence on treatment comparisons

Example 1:
e Direct comparison: Trials A vs B

e Indirect comparison: Trials Avs Cand Bvs C

e Other names:
Mixed-treatment comparisons (MTC)

Mixed-treatment meta-analysis (MTM)
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1. Introduction

Table 1. Smoking Cessation Rates (rix/ni) (Hasselblad 1998)

Individual Group
Study  Nocontact Self-help counseling counseling

Baseline number (A) (B) (C) (D)
Gia 1 9/140 23/140 | 10/138 Direct comparison (A vs B)
Gig) 2 11/78 12/85 29/170 : . :
G s [T —Treo] Indirect comparison (via C)
4 18/671  21/535
5
6 75/731 363/714
7 2/106 9/205
8 58/549 237/1,561
9 0/33 0/48
10 3/100 31,98
11 1/31 26,/95
12 6/39 17/77
13 95/1,107 134/1,031
14 15/187 35/504
15 78/584 73/675
16 69/1,177 54/888
17 64/642 107/761
18 5/62 8/90
19 20/234 34/237
20 0/20 9/20
Gig) 21 20/49 16/43
22 7/66 32/127 Example 1:
G 23 12/76 20/74
© 24 g;f55 3;{25 Lu and Ades (2006)
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1. Introduction

No contact
(A)
Group
Counselling
(D)
Individual -
Sel(fék;eIp Counselling (Dias et al., 2010)

(C)
Undirected graph:  Vertices = treatments
Edges = direct comparisons

EFSPI, Braine-I'Alleud, 22 November 2016 Hans-Peter Piepho 7



1. Introduction

ASPAC PTCA
(9) (7)

SK
(1)

t-PA UK
(2) (8)

Example 2: Trombolytics data (Dias et al., 2010), nine treatments, 50 trials,
response = mortalities (binomial)
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1. Introduction

\ ?  Indirect comparison

(Placebo)

Comparison Mean difference

(contrast)
Bvs A -0.34
Cvs A -0.19

MD,. = MD,, - MD,, = —0.34+0.19 = —0.15

EFSPI, Braine-I'Alleud, 22 November 2016 Hans-Peter Piepho 9



1. Introduction

Combining direct and indirect evidence

e Inverse variance method

e Each estimate of mean difference (MD) is ‘'weighted’ by the inverse of its
variance

e This leads to a 'mixed' result:

1 I\/IDdirect + 1 MD

Vardirect Varindirect

1 1
_I_

Vardirect Vari ndirect

indirect

'mixed MD'=

(Georgia Salanti, Workshop Zurich 2011)
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1. Introduction

Parallels with multi-environment trials (MET)

e Incomplete genotype x environment trials
(treatments = genotypes, environments = trials, studies)
e Interested in genotype means across environments
e Heterogeneity between environments = genotype-environment interaction

e Modelling variance-covariance structure for heterogeneity
= variance-covariance structures for genotype-environment interaction
= variances and covariances not constant between genotypes
= stability analysis, analysis of phenotypic stability

e Also similar to incomplete block designs
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2. Modelling individual patient data

Two modelling approaches
(1) Contrast-based models
e relative treatment effects compared to baseline (log relative risk, log

odds ratio, mean difference)
e Models for contrasts

(2) Arm-based models

e absolute treatment effects (log risk, log odds, freatment means)
e Analysis-of-variance (ANOVA) models for factors study and treatment
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2. Modelling individual patient data

Linear predictors for two treatments A and B

A = baseline treatment

B = new medication

Ain=u
B: m=p+d,

U = baseline effect for the trial

d ,; = effect of treatment B compared to baseline A
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2. Modelling individual patient data

Linear predictors for three treatments A, B and C

(1) When A is baseline (A vs B and A vs C trials)

Al =H
B: 7 =p+dy
C:np=p+d,

(2) When B is baseline (B vs C trials)

B: 7=x

C:n=p+dy
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2. Modelling individual patient data

Basic parameters and functional parameters

Basic parameters: d.g, dac

Functional parameters: dgc =d, . —d g

(2) When B is baseline (B vs C trials)

B: 7= 41

C:n=p+d,—dy
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2. Modelling individual patient data

The linear predictor for the K-th treatment in the i-th trial is given by
Mk = K T Uik5ib(i)k

where

H; = baseline parameter in the I-th trial

= expected value of the baseline treatment b(i) in the I-th trial

Sinix = random effect of treatment K versus baseline b(i) in the i-th trial

U, :{1, k = bi)

0, k=hi) (Lu & Ades, 2006)
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2. Modelling individual patient data

Random effects for baseline contrasts:
E(é}b(i)k ) = db(i)k

db(i)k = treatment effects to be estimated across trials

Fixed effects-part of the model:

E(’?ik ) =+ Uy
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2. Modelling individual patient data

Heterogeneity between trials

— Variance-covariance structure for é}b(i)k in I-th trial, e.g.

Var{é‘ib(i)k }: (I n(i)-1 T Jn(i)-1)f2 /2

where

| = N-dimensional identity matrix

n
J. =N xnNmatrix of ones

2 . . .
T° = avariance component for between-trial heterogeneity

n(i) = number of treatments in the I-th trial
(Higgins & Whitehead, 1996; Lu & Ades, 2004)

EFSPI, Braine-I'Alleud, 22 November 2016 Hans-Peter Piepho
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2. Modelling individual patient data

Conditionally on the linear predictor, the observation Yii on the j-th
individual in the I-th trial for the k-th treatment has expected value

E(yijk | Min(i)k ) =9 R (ﬁib(i)k )

where g() is a suitable link function

= Generalized linear mixed model (GLMM)

— use adaptive Gaussian quadrature (Pinheiro & Bates, 1995)

EFSPI, Braine-I'Alleud, 22 November 2016 Hans-Peter Piepho
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2. Modelling individual patient data

An alternative linear predictor
M = Pi + o + Uy
where

B, = fixed main effect of the i-th trial,
&, = main effect of the k-th treatment, and

U, = random effect associated with 77,

E(77ik ) = [ + ¢
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2. Modelling individual patient data

Variance-covariance structure for heterogeneity

Let U, = vector of random effects U, for the I-th trial

Then
E(ui ) =0 and
Var(ui ): 2,

EFSPI, Braine-I'Alleud, 22 November 2016 Hans-Peter Piepho 21



2. Modelling individual patient data

Relation between baseline contrast model and the two-way model

=f t o +U

“ 7 “ 7
M = Pi + Ay Uingy + A = (i) + Uie = Uiy = 44 + U O

A\ A 4
Y

<

= [ + 0ty (i) + Uy O = A — (i) + Uy
where
Uy = Uy — Up) and E(&ib(i)k): db(i)k = Oy — Q)

b(i) = baseline tfreatment in i-th trial
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2. Modelling individual patient data

Re-parameterized model has random effects:

Uiniy and Uy = Uy — Ujpgiy [k i b(i)]

Transition from two-way model to baseline contrast model:
Conditioning on U !

= baseline treatment has no variance in I-th trial
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2. Modelling individual patient data
Let

e U; = vector of random effects u, for the I-th trial
e U, =vector of random effects U, for the I-th trial

e var(u,)=X, and (without loss of generality) that b(i)=1
Then
var(i )=%, =D,Z,D/

where D, = (—ln(i)_l In(i)—l) is the matrix generating all contrasts relative to

the baseline treatment in the I-th trial
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2. Modelling individual patient data

Examples for variance-covariance structure of U,

Constant variance model:
_ 2 v 2
z:i — In(i)o-u = Zi - (In(i)—l T ‘Jn(i)—l)au

Diagonal model:

. 2 2 2 < . 2 2 2 2
2 = dlag(a1 ,02,...,0,,,) = 2. = dlag(02,03 yeres O )+ J. 0o

Factor-analytic model (one factor):

Y. =AA", where A =(/11,/12,...) = ii — A" with A 2(12 — A, 4 —ﬂqa---)

Unstructured model:

Maximum n.(n, —1)/2 free parameters for X.

EFSPI, Braine-I'Alleud, 22 November 2016 Hans-Peter Piepho 25



2. Modelling individual patient data
Implement conditional model for X, via unconditional model for X,

~~

n
Ui, = Ui — Uy = U = inkuik
=1

Example 1: Smoking cessation data

Dummy variables

Baseline treatment Treatment Xi X5 Xi3 Xiy
A A 0 0 0 0

B -1 1 0 0

C -1 0 1 0

D -1 0 0 1

EFSPI, Braine-1'Alleud, 22 November 2016 Hans-Peter Piepho
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2. Modelling individual patient data

Dummy variables

Baseline treatment Treatment Xy Xi5 Xis Xi4
B A 1 -1 0] 0]

B 0) 0 0 0

C 0 -1 1 0

D 0 -1 0 1

C A 1 0 -1 0

B 0 1 -1 0

C 0 0 0 0

D 0] 0 -1 1
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2. Modelling individual patient data

Equivalence of conditional and unconditional model

Conditional model:

Var(77i | uil)z 0D ii , where 77iT = (77i1,77i2,---) and b(i): 1
Unconditional model:

Var(ﬂi ) =2

Both models are equivalent in the sense that for any contrast C'7,

VaI'(CTUi | u”): c' (O @ ii)c =C'Z.Cc= Var(CTni)

EFSPI, Braine-1'Alleud, 22 November 2016 Hans-Peter Piepho
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2. Modelling individual patient data

Equivalence (continued)

Var(CTni | Un): c' (O ® ii)c =C'Z.Cc= Var(CTni)

To see this, let ¢’ = (CI,C; ) where C, is the first element of Cand C, is

the remainder. Then C' (O @ fi)c =clS.c, =c]D,Dlc, =(c,.c] (el ) .
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2. Modelling individual patient data

Equivalence (continued)

e Models fully equivalent with identity link and normal distribution

e Models not equivalent with other link functions and distributions

Example 1:

e Smoking cessation data
e Changed baseline treatment in some trials

e Used adaptive Gaussian quadrature (GLIMMIX procedure of SAS)

° 2 = In(i)aj = ii :(In(i)—l +Jn(i)_1)<7u2

EFSPI, Braine-1'Alleud, 22 November 2016 Hans-Peter Piepho
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2. Modelling individual patient data

Table 1: Smoking cessation data (Example 1)
Standard

Estimate error

Baseline contrasts using original baseline treatments (A)

d,g 0.4192 0.2959
d,c 0.7407 0.1738
dpo 0.9484 0.3292

Baseline contrasts taking B as baseline treatment in trials 3-5

d,q 0.4415 0.2982
d e 0.7449 0.1751
dpo 0.9580 0.3315

EFSPI, Braine-1'Alleud, 22 November 2016 Hans-Peter Piepho
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2. Modelling individual patient data

Table 1: Smoking cessation data (Example 1 continued)

Estimate

Standard

error

Baseline contrasts (2) taking C as baseline treatment in trials 6-15

dAB
dAC
dAD

Two-way model estimates

g —Up
e —Up
ap —Up

EFSPI, Braine-1'Alleud, 22 November 2016

0.4407
0.7773

0.9821

0.3865
0.7166
0.9199

0.3154
0.1868
0.3493

0.2387
0.1374
0.2720
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2. Modelling individual patient data

Table 2: Smoking cessation data (Example 1 continued); constant variance
model for Uj;

Standard
Estimate error

Adjusted means $
ay+ P, 242354 0.1107
ag + B, -2.0366 ab 0.2106
ac + p., 117068 b 0.0971
ap + B, -15047 b 0.2273

$ Adjusted means (computed on the logit scale) followed by a common letter
are not significantly different at & = 5% according to a Wald-test.
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2. Modelling individual patient data

Table 3: Analysis of smoking cessation data based on two-way model.

Standard
Parameter Estimate error AIC
Constant variance:
ol 0.09068 0.02810 391.20

Diagonal (treatment-specific variance):

ou) 05599 0.2626 365.91
Tut) 0 _
o) 0 :
Oya) 0.1292 0.2411
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2. Modelling individual patient data

Table 4: Analysis of smoking cessation data based on two-way model.

Standard
Parameter Estimate error AIC
Constant variance:
ol 0.09068 0.02810 391.20
Factor-analytic:
A, 0.4969 0.1736 364.02
A 0 _
A, -0.2423 0.1157
A, 0.05856 0.1985

EFSPI, Braine-1'Alleud, 22 November 2016
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2. Modelling individual patient data
Fitting the FA model with SAS

proc glimmix data=a maxopt=100
method=quad(gpoints=6);
class study trt;
model m/n = study trt
/ ddfm=none solution chisq;
random trt / sub=study type=fal(l);
Ismeans trt / pdiff lines;
run;

EFSPI, Braine-I'Alleud, 22 November 2016 Hans-Peter Piepho 36



2. Modelling individual patient data

Study effects fixed or random?
Study effects fixed

e Inference based on within-study information
e Inference Protected by randomization

e Obeys principle of concurrent control

e Can only assess relative treatment effects

Study effects random
e Recovery of inter-study information

e Need to assume that studies in NMA are random sample from some urne
e Can also assess absolute treatment effects

EFSPI, Braine-1'Alleud, 22 November 2016 Hans-Peter Piepho 37



2. Modelling individual patient data

Recent discussion on arm-based (AB) versus contrast-based (CB) models

e The discussion focusses much on estimation of relative treatment effects
(CB) versus absolute treatment effects (AB)
e T think this becomes a non-issue when a study main effect is included in

the AB model
e The main issue is whether or not to recover the inter-study information,

i.e. whether the study main effect is tfaken as fixed or random

Dias S, Ades AE 2016 Absolute or relative effects? Arm-based synthesis of
trial data (Commentary). Research Synthesis Methods 7, 23-28.

Hong, H., Chu, H., Zhang, J., Carlin, B.P. 2016 Rejoinder to the discussion of "a
Bayesian missing data framework for generalized multiple outcome mixed
treatment comparisons,” by S. Dias and A.E. Ades. Research Synthesis
Methods 7, 29-33.
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3. Treatment summaries and contrasts thereof
Notation for treatment summaries

e S = vector of treatment summaries in i-th trial (means, log odds, etc)
e sorted such that the baseline for the i-th trial is in the first position
e Pairwise contrasts of all treatments to baseline are computed by
z, =D.s,,
where D. = (— Loy In(i)—l) and n(i) = number of treatments in i-th trial
e Stacking trials 1 =1,2,...,m , we may write
Zz=Ds,

m
where Z' :(zfz;z;) s' =(sf,s;,...,s;) and D=®D..
1=1

EFSPI, Braine-I'Alleud, 22 November 2016 Hans-Peter Piepho 39



3. Treatment summaries and contrasts thereof

Basic model for treatment summaries
s=n+e,
where

n' = (771T ,772T ,...,77;) is a vector holding linear predictors 77,

€ = estimation errors associated with summary measures S

e~ N(0,R)

R =®R,, where R, = var(s, | ,)

m
1=1

EFSPI, Braine-I'Alleud, 22 November 2016 Hans-Peter Piepho 40



3. Treatment summaries and contrasts thereof
Two-way model for linear predictor vector
n=Xsp+X,a+u
where

B = fixed trial main effects with design matrix X

a = fixed tfreatment main effects with design matrix X_

= random between-trial effects with u ~ N (O,Z) and =@
i—1

Hence,
E(s)=E(n)=X,8+ X,z and

Var(s):V =2+R

EFSPI, Braine-1'Alleud, 22 November 2016 Hans-Peter Piepho
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3. Treatment summaries and contrasts thereof
Sweeping out trial main effects
2 =Ps,

where P=1—-P and P = Xﬂ(X;Xﬂ)_X;

This is equivalent to computing contrasts to baseline per trial: Z = Ds

& P=D"(DD")'D and hence 2" =D (DD" ) 'z

Normal equations for Z° = Ps yield same solution for ¥ as those for S
Proof in De Hoog, Speed & Williams (1990)
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3. Treatment summaries and contrasts thereof

Equivalence of REML estimates of variance components

REML
e operates on contrasts free of fixed effects

e is invariant to the choice of contrasts (Harville, 1977)

After sweeping out the trial effect £ via z = Ds, the conditional and the

unconditional variance-covariance models are identical:

var(z)=DVD' =V ,where V =X+ DRD' and X = _@lii.

— REML estimates of variance components coincide under both models

EFSPI, Braine-I'Alleud, 22 November 2016 Hans-Peter Piepho 43



3. Treatment summaries and contrasts thereof
Example 1 (continued)
e Empirical log-odds of treatment versus baseline
= baseline contrast on logit scale
e In case a treatment has no successes or failures, a correction factor of a
half is added to both success and failure counts
e Compute error variance R of log-odds using GLM package

e Baseline treatment differs among trials

e Basic parameters d,;, d,. and d,;

e Functional parameters dg. =d,. —d,z, dgpy =d,\; —d 5, g =d,p —d -
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3. Treatment summaries and contrasts thereof

Test of global null hypothesis

* Hy:dyg=0d,c=d,y =0 = Hyiya=7s=7c =70
¢ Y° =462
e 3 numerator d.f.

e 21 denominator d.f.

e p=0.0124

Both analyses identicall
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3. Treatment summaries and contrasts thereof

Table 3: Summary measures analysis for smoking cessation data (REML). We
assumed 2, = In(i)ai for heterogeneity under the two-way model. This is

equivalent to fitting X, = (I a1 T 90 )auz for the baseline-contrast model.

Contrast Standard
Baseline Two-way Estimate error
contrasts § model §

dAB U — U 0.3978 0.3305
d,c Oc — 0.7013 0.1972
dp ap —a, 0.8642 0.3749

§ Results are identical for both analyses
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3. Treatment summaries and contrasts thereof

Table 3 (continued)

Contrast Standard
Baseline Two-way Estimate error
contrasts model

Adjusted means $

_ a.+ B, -2.3792 a 0.1553
- ag + B, -1.9815 ab 0.2886
_ a. + . -1.6779 b 0.1352
- ap + B, -15150 b 0.3100

$ Adjusted means followed by a common letter are not significantly different
at & =5% according to a t-test using the Kenward-Roger (1997) method for
degrees of freedom and variance adjustments
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3. Treatment summaries and contrasts thereof

Take home message up to here

Compared:

e Baseline contrast model (conditional) M = 4, +Uik5ib(i)k

e Two-way model (unconditional) M = B + o + Uy

Full equivalence:
e Summary data
e Individual patient data with identity link and normal errors

Very similar results:
e All other cases

e But: Baseline contrast model is not invariant to choice of baseline!

EFSPI, Braine-1'Alleud, 22 November 2016 Hans-Peter Piepho
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4. Testing inconsistency
Example
e Trial network with three treatments (A, B, €)
e Three types of trial: Avs B, Avs Cand Bvs C
e Consider evidence on Bvs C
e Need to combine direct and indirect evidence on treatment comparisons
Direct comparison: Trials Bvs C
Indirect comparison: Trials Avs Band Avs C
e Inconsistency (incoherence):

= direct and indirect comparisons for B vs € do not agree

EFSPI, Braine-I'Alleud, 22 November 2016 Hans-Peter Piepho 49



4. Testing inconsistency

Reasons for inconsistency

e A new drug may be tested on a population of patients, for which a standard
drug did not show a satisfactory effect. The effect relative to a placebo in
such a selected population may differ from the effect in a population that
is not selected in this way.

e Inconsistency may also occur in open-label or imperfectly blinded trials
(Lumley, 2002)

Other term

e Incoherence (Lumley, 2002)

EFSPI, Braine-I'Alleud, 22 November 2016 Hans-Peter Piepho 50



4. Testing inconsistency
Inconsistency relation
e Assume that B is baseline treatment in trials Bvs C

e Use functional parameter to model effect of C:
Ope =dpc —0pg

e Modification in case of inconsistency :
Ogc =d,c —dpg +W,ase  (inconsistency relation)

— use this for treatment C in trials where B is baseline

e If W,y is significant, inconsistency is established

EFSPI, Braine-1'Alleud, 22 November 2016
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4. Testing inconsistency

Loops

Network forms a closed loop between A, B and C in an undirected graph with
vertices corresponding to treatments and edges representing direct

comparisons between treatments (Lu and Ades, 2006)
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4. Testing inconsistency

No contact

(A)

WABC
Group

Counselling

(D)

Individual :
Se|(f-Br;e|p Counselling (Dias et al., 2010)

(C)
Undirected graph:  Vertices = treatments
Edges = direct comparisons

EFSPI, Braine-I'Alleud, 22 November 2016
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4. Testing inconsistency

Using inconsistency factors is not easy!

e Modeling and interpretation of inconsistency become more difficult in the
presence of multi-arm trials, and fitting the model may require careful
programming

e The types of inconsistency that can be tested using inconsistency factors
are not invariant to the choice of basic parameters

e ".. we have not managed to find a general formula of a mechanical routine to
count [the number of independent consistency relations]” (Lu & Ades, 2006)

e "In practice, an inconsistency model must be programmed very carefully,

and the [number of independent inconsistencies] may have to be counted by

hand." (Lu & Ades, 2006)
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4. Testing inconsistency

Example:

e Structure {Avs B, Avs C, Avs Bvs ().
e This could be modeled by parameters (dAB,dAC ) (dAB,dBC) , or (dAC,dBC)
e The three parameterizations are essentially equivalent

e But: If (dAB,dAC) is chosen, then the inconsistency relation

dgc =d,c —dag +Wage cannot be used, because parameter Ugc is already

implicitly defined by the parameterization of three-arm trial A vs Bvs C.

(Lu & Ades, 2006)
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4. Testing inconsistency

Here we keep it simple

e Node-splitting algorithm (Dias et al., 2010)

= Use inconsistency factors one comparison at a time

Wag = 1 for B when A & B in same trial

Wag = 0 otherwise

(for details on more complex approaches see Lu & Ades, 2006)

EFSPI, Braine-1'Alleud, 22 November 2016
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4. Testing inconsistency

Table 4: Estimates for inconsistency factors (w4g) when fitted one-at-a-time
in two-way model trial-by-treatment for Thrombolytics data (Dias et al. 2010)

Treatments W g Standard p-value AICS
A B error

1 2 -0.2038 0.2296 0.3749 593.79
1 3 0.09045 0.1040 0.3843 593.83
1 5 0.1206 0.1204 0.3164 593.58
1 7 -0.2678 0.2200 0.2235 593.09
1 8 -0.1799 0.5591 0.7476 594 .48
1 9 -0.4050 0.2517 0.1076 591.94
2 7 -0.1291 0.3986 0.7461 594 .48
2 8 -0.1352 0.4464 0.7619 594 .49
2 9 -0.3005 0.3557 0.3983 593.87
3 4 -0.4568 0.6620 0.4902 594.10
3 5 -0.1206 0.1204 0.3164 593.58
3 7 0.2780 0.2091 0.1835 592.80
3 8 0.2559 0.4529 0.5720 594 .26
3 9 11924 0.4094 0.0036 584.52

§ The two-way model without inconsistency factor has AIC = 592.59.
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4. Testing inconsistency

Conditional Studentized Residuals
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Fig. 1 Residual plots for two-way model (5) fitted to Thrombolytics data.
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4. Testing inconsistency

Table 5: Observations with absolute studentized residuals > 2 in

Thrombolytics data based on an additive model with main effects for trial

and treatment.

Treatment Trial Cases Sample  Studentized

size residual
3 44 5 210 -2.20288
3 45 3 138 -2.09658
9 44 17 211 2.20280
9 45 13 147 2.09651
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4. Testing inconsistency
Extending the notion of inconsistency
e Comparison of direct and indirect evidence on a contrast
e Presence of a new treatment in a trial may well modify the direct
difference between A and B (Lu et al., 2011)

— need to compare direct comparisons from different types of trial

Idea

— Test interaction in trial type x treatment classification

EFSPI, Braine-1'Alleud, 22 November 2016 Hans-Peter Piepho
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4. Testing inconsistency

Treatment
Trial type A B C
1 X X
2 X X
3 X X

Fig. 2: Trial type x treatment classification for network
{Avs B, Avs C, Bvs ().

e N=3 treatments
e M=3 trial types

e C=6 cells filled

= C—N-m+1=1 d.f. for interaction trial type x treatment
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4. Testing inconsistency

Treatment
Trial type A B C
1 X X X
2 X X

Fig. 3: Trial type x treatment classification for network

{Avs Bvs C, Av. B}.

e N =3 treatments
e M=2 trial types

o C=15 cells filled

— C—N-m+1=1 d.f. for interaction trial type x treatment
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4. Testing inconsistency

Treatment
Trial type A B C
1 X X
2 X X
3 X X X

Fig. 4: Trial type x treatment classification for network

{Avs B, Avs C, Avs Bvs C}.

e N=3 treatments
e M=3 trial types

o C=7 cells filled

= C—N—-m+1=2 d.f. for interaction trial type x treatment

EFSPI, Braine-1'Alleud, 22 November 2016
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4. Testing inconsistency

Model to test for inconsistency
My =0; + B + o + (a5)jk + Uy,

0, = fixed main effect for the j-th trial type

(055 )jk = fixed effect for the interaction jk-th trial type x treatment

e Heterogeneity U;, can be separated from inconsistency (a5)jk provided

there are several trials per trial type (design)
e Heterogeneity is a property of variation among trials within the same trial
type, while inconsistency affects variation between trial types
(Piepho, Madden and Williams, 2012, Biometrics)
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4. Testing inconsistency
Example 2 (Thrombolytics data):

e Wald test for the trial type-treatment interaction in the

e > =13.40 on10d.f.; p=0.2020
e Bonferroni-adjustment for test of inconsistency factor W.,: p = 0.0504

e In summary, there is overall good agreement between our analysis and that

presented in Dias et al. (2010)
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4. Testing inconsistency
Example 1 (Smoking cessation data):
e C—N—-M+1=18-8—-4+1=7 degrees of freedom for inconsistency

e Adaptive Gaussian quadrature to fit a logit model by ML

e 7> =5.81 (p=0.5627) with heterogeneity (Uj)

e 7> =12.18 (p=0.0948) without heterogeneity

For comparison: Model with baseline contrasts (Lu et al., 2011)

o 7’ =4.71 with heterogeneity

e 7’ =15.22 without heterogeneity
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4. Testing inconsistency

Example 3:

Diabetes study of Senn et al. (2013)
26 trials

15 different designs (one three-arm trial)

10 treatments, mostly involving glucose-lowering agent added to baseline
sulfonylurea treatment

Continuous outcome: blood glucose change

EFSPI, Braine-I'Alleud, 22 November 2016 Hans-Peter Piepho 67



4. Testing inconsistency

Factor symbol Factor description

G Group of trials, trial type, design
S Study, trial

T Treatment

Two-way ANOVA

SxT=5+T+S5T

Model for inconsistency

(6/S)xT=6+65+T+6.T+6S5T

Y N

inconsistency  heterogeneity
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4. Testing inconsistency

Locating inconsistency by detachment of individual designs

Factor symbol Factor description

D1 D1 =1 for design 1, D1 = O otherwise
G Group of trials, frial type, design

S Study, trial

T Treatment

(D1/6/S)x T=D1+D1.6+D16.S+T+D1LT+D16.T+D16.S.T

“ A N

detach design1  inconsistency  heterogeneity
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4. Testing inconsistency

Design Design No. D.f. Effect 6.5.T fixed
no. (k) of for Dk.T Dk.G.T

trials DK.T Wald  p-value Wald  p-value

statistic statistic
acar:plac 1 1 1 0.09 0.7699 22.45 0.0010
acar:SUal 2 1 1 0.01 09091 22.52 0.0010
metf:plac 4 3 1 046 04976 22.07 0.0012
metf:acariplac 5 1 2 0.15 09297 22.39 0.0004
metf:SUal 6 1 1 15.02 0.0001 7.52 0.2758
piog:plac 8 1 1 5.28 0.0215 17.25 0.0084
piog:metf 9 1 1 5.40 0.0201 17.13 0.0088
piog:rosi 10 1 1 005 0.8280 22.49 0.0010
rosi:plac 11 6 1 6.24 0.0125 16.30 0.0122
rosi:metf 12 2 1 001 09199 22.52 0.0010
rosi:SUal 13 1 1 15.76 <0.0001 6.77 0.3424
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4. Testing inconsistency

Design Design No. D.f. Effect 6.5.T random
no. (k) of  for Dk.T Dk.G.T

trials DK.T Wald  p-value Wald  p-value

statistic statistic
acar:plac 1 1 1 0.02 0.8889 2.25 0.8782
acar:SUal 2 1 1 0.01 0.9430 2.26 0.8765
metf:plac 4 3 1 0.04 0.8379 222 0.8814
metf:acariplac 5 1 2 0.07 0.9634 2.18 0.8129
metf:SUal 6 1 1 1.63 0.2343 0.92 0.9835
piog:plac 8 1 1 0.43 0.5299 1.96 0.9062
piog:metf 9 1 1 0.43 0.5318 1.94 0.9081
piog:rosi 10 1 1 0.01 0.9065 2.27 0.8751
rosi:plac 11 6 1 0.74 04112 1.87 0.9168
rosi:metf 12 2 1 0.01 09276 2.25 0.8795
rosi:SUal 13 1 1 179 0.2146 0.66 0.9930
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4. Testing inconsistency

Case-deletion plots and residual diagnostics

(1) Fit model (6/S) x T and compute 6.T means

(2) Fit model 6 + T o 6.T means

= Drop a 6.T mean and compute T means based on model G + T

= Compute studentized residuals for 6.T means from model G + T
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4. Testing inconsistency
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Fig. 1: Case-deletion plot of treatment means. Case-deletion means based on a fit of the model G + T using design x treatment mean
estimates obtained from fitting model (2) taking heterogeneity G.S.T as random. To obtain diagnostics for treatment means (factor T), we

prevented an intercept from being fitted and imposed a sum-to-zero restriction on the design effects G.
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4. Testing inconsistency

Design  Observation Treatment 6.5.T random
PRESS residual Studentized res.
1 1 Acar 0.0785 0.1453
2 plac -0.0785 -0.1453
2 3 acar 0.0619 0.1056
4 SUal -0.0619 -0.1056
3 5 benf
6 plac : :
4 7 metf -0.0781 -0.2282
8 plac 0.0781 0.2282
5 9 acar -0.1507 -0.2601
10 metf 0.0036 0.0075
11 plac 0.1193 0.2273
6 12 metf 0.6095 1.1614
13 SUal -0.6095 -1.1614
7 14 migl
15 plac
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4. Testing inconsistency

Design  Observation Treatment 6.5.T random
PRESS residual Studentized res.
8 16 piog -0.2802 -0.5585
17 plac 0.2802 0.5585
9 18 metf -0.2927 -0.5779
19 piog 0.2927 0.5779
10 20 piog -0.0073 -0.0141
21 rosi 0.0073 0.0141
11 22 plac -0.2100 -0.6391
23 rosi 0.2100 0.6391
12 24 metf -0.0616 -0.1610
25 rosi 0.0616 0.1610
13 26 rosi -0.6733 -1.2693
27 SUal 0.6733 1.2693
14 28 plac
29 sita
15 30 plac
31 vild
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5. Introducing multiplicative terms
Example 4:
e Sclerotherapy data in Sharp and Thompson (2000)
e 19 trials
e 2 treatments (control and treatment)

e Number of deaths and bleeds
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5. Introducing multiplicative terms

Table I. Numbers of deaths and bleeds, and total numbers of patients, in 19 sclerotherapy trials,
taken from Pagliaro [12].

Trial Control group Treatment group Quality™ Duration’
Deaths Bleeds Total Deaths Bleeds Total

1 14 22 36 2 3 35 6 24
2 29 30 53 12 5 56 38 35
3 6 6 18 6 5 16 31 36
4 6 9 22 = 3 23 0 19
5 34 31 46 30 11 49 38 44
6 14 9 60 13 19 53 52 13
7 27 26 60 15 17 53 75 24
8 26 29 69 16 10 71 71 13
9 19 14 41 10 12 41 81 36
10 2 3 20 0 0 21 63 17
11 18 13 41 18 9 42 75 24
12 21 14 35 20 13 33 71 61
13 23 23 138 46 31 143 68 22
14 24 19 51 19 20 55 58 24
15 14 13 72 18 13 73 83 15
16 4 12 16 2 3 13 NA 16
17 8 5 28 6 3 21 NA 30
18 6 0 19 7 4 18 NA 24
19 5 2 24 5 6 22 NA 16

* Quality 1s calculated as a percentage of the maximum possible score, based on a scoring system which took into account
how various aspects of the trial were handled, such as randomization, compliance, sample size and withdrawals [12]. Higher
scores indicate higher quality, NA =not available.

T Duration is the average length of follow-up in months.
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5. Introducing multiplicative terms

o
O

Difference of log odds

1 I I I

-2.5 -2.0 -1.5 -1.0
Mean of log odds

EFSPI, Braine-1'Alleud, 22 November 2016

-0.5
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Fig: Difference of control
and treatment vs. mean on
log odds scale.
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5. Introducing multiplicative terms

Regress expected treatment difference baseline treatment

Ny, — My =6, +60n, < n, =0+ (‘91 + 1)77i1

11 = expected value of the baseline treatment in the i-th trial

1, = expected value of the new treatment

Schmid et al. (1998), Sharp & Thompson (2000)

Ignoring heterogeneity among the trials, this type of model is commensurate

with a multiplicative model of the form ...
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5. Introducing multiplicative terms

A commensurate model (joint regression model)
M =+ 1D

where @, = intercept for k-th treatment

Y« = slope for k-th treatment
S = effect (latent variable) for i-th trial (fixed!)

= Finlay-Wilkinson (1963) regression in plant breeding!

Identifiability constraints Z)/k =N and Z,B, =0 (Ng & Grunwald, 1997).
k=1 i=1
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5. Introducing multiplicative terms

e With just two treatments, rearranging and comparing coefficients yields:

0, =0[2—0517/2/7/1

0, =7, /7/1 -1
e With Finlay-Wilkinson model easy to extend to more than 2 treatments!

e Add random effect for heterogeneity:

M = & + 7, P + Uy
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5. Introducing multiplicative terms

Interpretation of treatment effects more difficult
T — i, =& — &, "‘(7/1 _7/2)/8i

— contrast depends on study
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5. Introducing multiplicative terms

Factor-analytic model ( 5 random!)

We may define the composite random term
fi = 7B + Uy

and set the linear predictor equal to

M = + Ty

For idenftifiability, we require (7; = Var(,b’i):l, while y, and y, are

unconstrained. Thus, we have for two treatments
fil T 2

var =y +1,0],
iy

where 7' = (7/1,7/2). (Piepho, 1997, Biometrics)
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5. Introducing multiplicative terms

Fixed-effects model

Table: Fit of joint regression model (sclerotherapy data).

Random-effects model

Standard Standard
Parameter Estimate Error Estimate Error
o, (control) -0.927 0.261 -0.755 0.227
o, (new treatment) -1.247 0.089 -1.305 0.145
2 2.140 0.257 0.779 0.238
7, -0.140 0.257 -0.106 0.186
o 0.013 0.036 0.201 0.128
o, -1.308 0.131 -1.408 0.235
0 -1.065 0.112 -1.137 0.242
o, —a, -0.320 0.281 -0.550 0.286
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5. Introducing multiplicative terms

Comparison with compound symmetry (CS) model (random model)

n=y,=1

— CS model = two-way model with random study effects
Model AIC
Factor-analytic 243.15

Compound symmetry 244 .61
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5. Introducing multiplicative terms

Example 5: Diabetes data

e Incidence of diabetes with various antihypertensive drugs
e Binomial response (cases/total counts)

e 6 treatments:
ACE Inhibitor, ARB, CCB, Diuretic, Placebo, Beta-blocker

e 22 studies
e Treatment x trial classification very incomplete

(Elliot and Meyer, 2007, Lancet)
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5. Introducing multiplicative terms

Year Duration Drug1 MNew cases of Drug2 Mew cases of Drug3 Mew cases of
(years) diabetes/total diabetes/total diabetes/total

AASKE 2006 3-8 ACE inhibitor 45/410 B blocker 70/405 ] 32/202
ALLHAT™* 2002 4-0 ACE inhibitor 119/4096 CCB 1543954 Divretic 302/6766
ALPINE? 2003 1-0 ARB 1/196 Diuretic 8/196

ANBP-2= 2005 41 ACE inhibitor 138/2800 Diuretic 200/2826

ASCOT™ 2005 55 p blocker 799/7040 CCe S567/7072

CAPPP= 1999 61 ACE inhibitor 337/5183 B blocker 380/5230

CHARM™ 2003 =31 ARB 163/2715 Placebo 202{n

DREAM™ 2006 ~3-0 ACE inhibitor 449/2623 Placebo 480/2646

EWPHE® 1991 47 Diuretic 29/416 Placebo 20/424

FEVER™ 2005 33 CCB 177/4841 Placebo 154/4870

HAPPHY= 1987 33 p blocker 86/3297 Diuretic 753272

HOPE® 2001 45 ACE inhibitor 1022837 Placebo 155/2883

INSIGHT=* 2000 30 (B 136/2508 Diuretic 176/2511

INVEST* 2003 4-0 B blocker 665/8078 CCB 560/80028

LIFEY 2002 4-8 ARB 24214020 B blocker 320/3979 - ~
MRC-E= 1992 58 p blocker 37/1102 Diuretic 43/1081 Placebo 34/2213
NORDIL® 2000 4-5 p blocker ordivretic 2515059 (B 216/5095

PEACE™ 2004 4-8 ACE inhibitor 335/3432 Flacebo 399/3472

SCOPE® 2003 37 ARB 93/2167 Placebo 115/2175

SHEP*# 1998 30 Diuretic 140/1631 Placebo 1181578 - .
STOP-2¢ 1999 40 ACE inhibitor 93/1970 B blocker or diuretic 97/1960 B g5/1965
VALUE* 2004 4-2 ARB 690/5087 CCB 845/5074
Table 1: Summary of clinical trials of antihypertensive drugs that reported new cases of diabetes
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5. Introducing multiplicative terms

Factor-analytic model

M =+ 5 with T =706 +U

Var(fk):W/T T |665 with 7' :(7/1:7/2>"°97/6) and fiT :(fiI’ Fipeees fi6)

(£ (r+or  nye v W ns N
f, I S R 2y S 2 PR & AR P
R IE U IS TR 5 SR R =TI & 7R VR 6
f Y Vs Vals Va¥Ou Vs VaYe
fis Yt Ysha  Vshs YsVa Vs ¥ 0. Vs
o) v vers Vs veVs Vels  Ve+ou)
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5. Introducing multiplicative terms

Table: Parameter estimates for joint regression model (diabetes data).

Fixed-effects model

Random-effects model

Standard Standard
Parameter Estimate Error Estimate Error
&, (ACE inhibitor) -2.852 0.046 -2.864 0.156
&, (ARB) -2.907 0.061 -2.929 0.128
;5 (CCB) -2.793 0.034 -2.759 0.125
&, (Diuretic) -2.492 0.069 -2.523 0.135
&5 (Placebo) -2.710 0.052 -2.743 0.162
&s (Beta-blocker) -2.603 0.038 -2.572 0.136
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5. Introducing multiplicative terms

Table: Parameter estimates for joint regression model (diabetes data).

Fixed-effects model Random-effects model

Standard Standard
Parameter Estimate Error Estimate Error
Y1 (ACE inhibitor) 1.193 0.088 0.694 0.128
7> (ARB) 0.738 0.083 0.533 0.132
/3 (CCB) 0.820 0.062 0.555 0.105
Y4 (Diuretic) 1.039 0.116 0.586 0.124
/s (Placebo) 1.198 0.084 0.723 0.130
Y6 (Beta-blocker) 1.013 0.071 0.602 0.108
o, 0 i 0.0036 0.0042
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5. Introducing multiplicative terms

Fig. 2: Plot of fitted
linear predictor (7:)

versus estimated fixed
trial effect (B3) for the

analysis of the diabetes
example.

eta

-1.0 -0.5 0.0 0.5 1.0 1.5
beta
Treatment
ACEinhibitor =— =-—- ARB —_———— CCB
— = Dijuretic = = + Placebo =— = =— Db-blocker
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5. Introducing multiplicative terms
Modelling inconsistency
Mi =0; + B + o + (a5)jk + Uy,
o} = fixed main effect for the j-th trial type

J

(055 )jk = fixed effect for the interaction jk-th trial type x treatment

(significant inconsistency at P = 0.0021)

Modelling inconsistency by multiplicative terms
(a5)jk = (7, _1)5j —

M = VO; + Py + & + U,
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5. Introducing multiplicative terms

Comparing models (1) and (2)

' =1441 (d.f.=8,P=0.0711)
AIC(1)=417.8
AIC(2)=418.2

= Mild evidence that inconsistency well represented by multiplicative terms
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5. Introducing multiplicative terms

Table V1. Parameter estimates for the multiplicative (joint regression) model for incon-
sistency (17) (diabetes data of Elliot and Meyer, 2007 [9]) based analysis for individual
patient data (Example 2).
Standard Standard

Parameter Estimate Error Parameter Estimate Error
a, (ACE inhibitor) —3.0064 0.0731 d 1.4349 0.1429
a, (ARB) -3.0774 0.0855 5 0.0670 0.0770
a; (CCB) —2.9337 0.0468 33 —1.0530 0.3802
a4 (Diuretic) —2.6645 0.0619 5y 0.0874 0.0823
a5 (Placebo) —2.9621 0.0783 Js —0.4126 0.0670
a, (Beta-blocker) —2.6744 0.0383 ¢ 0.5708 0.0635
Y1 1.1803 0.1230 57 0.1801 0.0630
¥ 0.8581 0.1259 g —0.3383 0.0726
Y3 0.9190 0.0969 g 0.1766 0.0831
Y4 0.8545 0.1156 810 0.2478 0.0582
¥s 1.4187 0.1217 O 0.3452 0.0714
Ye 0.7694 0.0940 015 0.2492 0.0486
o’ 0 — O3 0.4945 0.0660

614 —1.2521 0.1585

b5 —0.7975 0.1010

ACE, angiotensin-converting enzyme: ARB. angiotensin-receptor blockers: CCB, calcium-
channel blockers.
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6. Summary

Inter-trial information: some remarks

e All models have fixed trial effect (some implicitly so)

e between-trial information on treatment effects is not recovered

e principle of concurrent control (Senn, 2000):
— effect of treatments should only be judged by within-trial comparisons
because only these are protected by randomization, provided that individual
trials are randomized, and only these are based on the same groups of units
(e.g., patients, plots, etc.).
= By contrast, with a meta-analysis, there is usually no randomization
between trials and groups of units for different trials may differ by
important confounding factors.

e Approaches that exploit between-trial information (van Houwelingen et al.,
2002; Dias and Ades, 2016) have been criticized by some authors.
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6. Summary

e In practice, between-trial information is often low, so differences in
analyses with fixed or random trial main effects are small, especially when
the same set of treatments is tested in all trials.

e In complex multiple-treatment networks, however, between-trial
information may be non-negligible.
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6. Summary

Compared:

e Baseline contrast model (conditional) 77, = 1 + Uiké]b(i)k

e Two-way model (unconditional) M = B + o + Uy

Full equivalence:
e Summary data
e Individual patient data with identity link and normal errors

Very similar results:
e All other cases

e But: Baseline contrast model is not invariant to choice of baselinel
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6. Summary

e Two-way model invariant to choice of baseline
e Two-way model much easier to fit using standard software
e Easy to fit two-way variance-covariance models for heterogeneity

e Joint regression model and factor-analytic models extend regression on
baseline treatment when there are more than two treatments

— easy to implement with two-way model

Lesson for multi-environment variety trials:

e Consider inconsistency of trials
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