Network meta-analysis in an ANOVA framework

Hans-Peter Piepho

Biostatistics Unit Universität Hohenheim Germany

1

Table of contents

- 1. Introduction
- 2. Modeling individual patient data with baseline contrasts
- 3. Treatment summaries and contrasts thereof
- 4. Testing consistency
- 5. Introducing multiplicative terms
- 6. Summary

Meta-analysis

- Combine results from several trials / studies
- Mostly clinical trials
- Individual patient data (IPD) or treatment summaries
- Two modelling approaches:

(1) Model for contrasts with baseline treatment per trial

(2) Two-way ANOVA model for trial × treatment classification

- Option (1) most common; but we think option (2) is much simpler
- \Rightarrow compare both modelling options
- \Rightarrow investigate when they are equivalent

Baseline	Study number	No contact (A)	Self-help (B)	Individual counseling (C)	Group counseling (D)
G _(A)	1	9/140		23/140	10/138
G(B)	2		11/78	12/85	29/170
<i>G</i> (<i>A</i>)	3 4 5	79/702 18/671 8/116	77/694 21/535 19/146		
	6 7 8	75/731 2/106 58/549	,	363/714 9/205 237/1,561	
	9 10 11	0/33 3/100		9/48 31/98	
	12 13	1/31 6/39 95/1,107		26/95 17/77 134/1,031	
	14 15 16	15/187 78/584 69/1,177		35/504 73/675 54/888	
	17 18	64/642 5/62		107/761 8/90	
	19 20	20/234 0/20		34/237	9/20
$G_{(B)}$	21 22		20/49 7/66	16/43	32/127
$G_{(C)}$	23 24			12/76 9/55	20/74 3/26

Table 1. Smoking Cessation Rates (r_{ik}/n_{ik}) (Hasselblad 1998)

```
Example 1:
Lu & Ades (2006) JASA
```

Network meta-analysis

- More than two treatments tested in combined trials
- Need to combine direct and indirect evidence on treatment comparisons

Example 1:

- Direct comparison: Trials A vs B
- Indirect comparison: Trials A vs C and B vs C
- Other names:

Mixed-treatment comparisons (MTC)

Mixed-treatment meta-analysis (MTM)

54/888

107/761

8/90

34/237

16/43

12/76

9/55

9/20

32/127

20/74

3/26

Baseline	Study number	No contact (A)	Self-help (B)	Individual counseling (C)	Group counseling (D)
$G_{(A)}$	1	9/140		23/140	10/138
$G_{(B)}$	2		11/78	12/85	29/170
G _(A)	3 4 5	79/702 18/671 8/116	77/694 21/535 19/146		
	6 7 8	75/731 2/106 58/549		363/714 9/205 237/1,561	
	9 10 11	0/33 3/100 1/31		9/48 31/98 26/95	
	12 13 14 15	6/39 95/1,107 15/187 78/584		17/77 134/1,031 35/504 73/675	

20/49

7/66

Table 1. Smoking Cessation Rates (r_{ik}/n_{ik}) (Hasselblad 1998)

Direct comparison (A vs B) Indirect comparison (via C)

Example 1: Lu and Ades (2006)

16

17

18

19

20

21

22

23

24

 $G_{(B)}$

 $G_{(C)}$

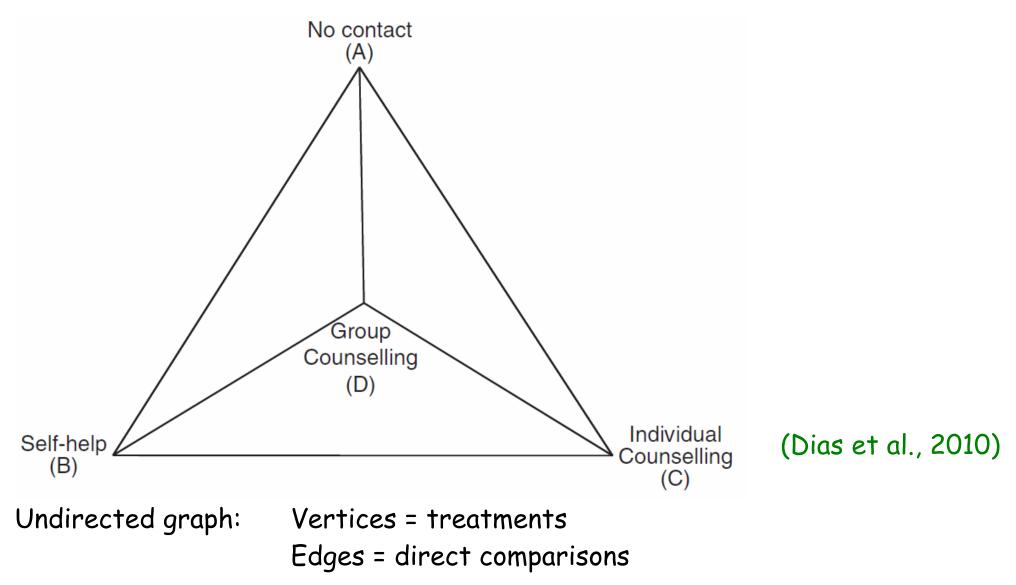
69/1,177

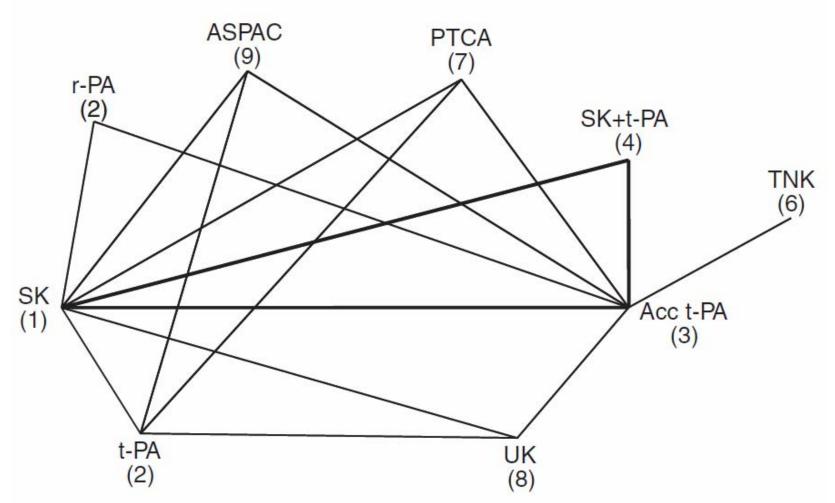
64/642

5/62

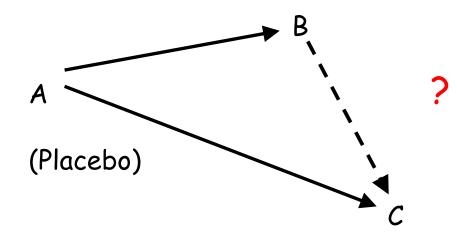
20/234

0/20





Example 2: Trombolytics data (Dias et al., 2010), nine treatments, 50 trials, response = mortalities (binomial)



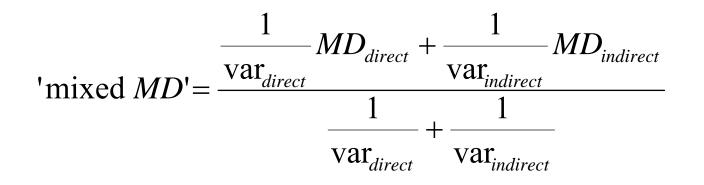
Indirect comparison

Comparison	Mean difference	
	(contrast)	
B vs A	-0.34	
C vs A	-0.19	

$$MD_{BC} = MD_{BA} - MD_{CA} = -0.34 + 0.19 = -0.15$$

Combining direct and indirect evidence

- Inverse variance method
- Each estimate of mean difference (MD) is 'weighted' by the inverse of its variance
- This leads to a 'mixed' result:



(Georgia Salanti, Workshop Zurich 2011)

Parallels with multi-environment trials (MET)

• Incomplete genotype × environment trials

(treatments = genotypes, environments = trials, studies)

- Interested in genotype means across environments
- Heterogeneity between environments \Rightarrow genotype-environment interaction
- Modelling variance-covariance structure for heterogeneity

 variance-covariance structures for genotype-environment interaction
 variances and covariances not constant between genotypes
 stability analysis, analysis of phenotypic stability
- Also similar to incomplete block designs

Two modelling approaches

(1) Contrast-based models

- relative treatment effects compared to baseline (log relative risk, log odds ratio, mean difference)
- Models for contrasts

(2) Arm-based models

- absolute treatment effects (log risk, log odds, treatment means)
- Analysis-of-variance (ANOVA) models for factors study and treatment

Linear predictors for two treatments A and B

- A = baseline treatment
- B = new medication

A: $\eta = \mu$

 $\mathbf{B}: \ \eta = \mu + d_{\scriptscriptstyle AB}$

 μ = baseline effect for the trial

 d_{AB} = effect of treatment B compared to baseline A

Linear predictors for three treatments A, B and C

(1) When A is baseline (A vs B and A vs C trials)

A: $\eta = \mu$

B: $\eta = \mu + d_{AB}$

 $C: \eta = \mu + d_{AC}$

(2) When B is baseline (B vs C trials)

B: $\eta = \mu$

 $C: \eta = \mu + d_{BC}$

Basic parameters and functional parameters

Basic parameters:

$$d_{\scriptscriptstyle AB}$$
 , $d_{\scriptscriptstyle AC}$

Functional parameters: $d_{BC} = d_{AC} - d_{AB}$

(2) When B is baseline (B vs C trials)

B: $\eta = \mu$

$$C: \eta = \mu + d_{AC} - d_{AB}$$

The linear predictor for the k-th treatment in the i-th trial is given by

 $\eta_{ik} = \mu_i + U_{ik} \delta_{ib(i)k}$

where

 μ_i = baseline parameter in the *i*-th trial

= expected value of the baseline treatment b(i) in the *i*-th trial

 $\delta_{ib(i)k}$ = random effect of treatment k versus baseline b(i) in the i-th trial

$$U_{ik} = \begin{cases} 1, & k \neq b(i) \\ 0, & k = b(i) \end{cases}$$
 (Lu & Ades, 2006)

Random effects for baseline contrasts:

 $E\left(\delta_{ib(i)k}\right) = d_{b(i)k}$

 $d_{b(i)k}$ = treatment effects to be estimated across trials

Fixed effects-part of the model:

$$E(\eta_{ik}) = \mu_i + U_{ik} d_{b(i)k}.$$

Heterogeneity between trials

 \Rightarrow Variance-covariance structure for $\delta_{ib(i)k}$ in *i*-th trial, e.g.

$$\operatorname{var}\left\{ \delta_{ib(i)k} \right\} = \left(I_{n(i)-1} + J_{n(i)-1} \right) \tau^2 / 2$$

where

- I_n = *n*-dimensional identity matrix
- $J_n = n \times n$ matrix of ones
- τ^2 = a variance component for between-trial heterogeneity
- n(i) = number of treatments in the *i*-th trial

(Higgins & Whitehead, 1996; Lu & Ades, 2004)

Conditionally on the linear predictor, the observation y_{ijk} on the *j*-th individual in the *i*-th trial for the *k*-th treatment has expected value

$$E(y_{ijk} \mid \eta_{ib(i)k}) = g^{-1}(\eta_{ib(i)k})$$

where g(.) is a suitable link function

 \Rightarrow Generalized linear mixed model (GLMM)

 \Rightarrow use adaptive Gaussian quadrature (Pinheiro & Bates, 1995)

An alternative linear predictor

 $\eta_{ik} = \beta_i + \alpha_k + u_{ik}$

where

 β_i = fixed main effect of the *i*-th trial,

 α_k = main effect of the k-th treatment, and

 u_{ik} = random effect associated with η_{ik}

$$E(\eta_{ik}) = \beta_i + \alpha_k$$

Variance-covariance structure for heterogeneity

Let u_i = vector of random effects u_{ik} for the *i*-th trial

Then

 $E(u_i) = 0$ and $var(u_i) = \Sigma_i$

Relation between baseline contrast model and the two-way model

$$\eta_{ik} = \beta_i + \alpha_k + u_{ik}$$

$$\eta_{ik} = \beta_i + \alpha_{b(i)} + u_{ib(i)} + \alpha_k - \alpha_{b(i)} + u_{ik} - u_{ib(i)} = \mu_i + U_{ik} \delta_{ib(i)k}$$

$$\mu_i = \beta_i + \alpha_{b(i)} + u_{ib(i)} \qquad \delta_{ib(i)k} = \alpha_k - \alpha_{b(i)} + \widetilde{u}_{ik}$$
where
$$\widetilde{u}_{ik} = u_{ik} - u_{ib(i)} \quad \text{and} \quad E(\delta_{ib(i)k}) = d_{b(i)k} = \alpha_k - \alpha_{b(i)}$$

b(i) = baseline treatment in *i*-th trial

Re-parameterized model has random effects:

$$u_{ib(i)}$$
 and $\widetilde{u}_{ik} = u_{ik} - u_{ib(i)} [k \neq b(i)]$

Transition from two-way model to baseline contrast model:

Conditioning on $u_{ib(i)}$!!

 \Rightarrow baseline treatment has no variance in *i*-th trial

Let

- u_i = vector of random effects u_{ik} for the *i*-th trial
- \widetilde{u}_i = vector of random effects \widetilde{u}_{ik} for the *i*-th trial
- $var(u_i) = \Sigma_i$ and (without loss of generality) that b(i) = 1

Then

$$\operatorname{var}(\widetilde{u}_i) = \widetilde{\Sigma}_i = D_i \Sigma_i D_i^T$$

where $D_i = \begin{pmatrix} -1_{n(i)-1} & I_{n(i)-1} \end{pmatrix}$ is the matrix generating all contrasts relative to

the baseline treatment in the i-th trial

Examples for variance-covariance structure of \widetilde{u}_i

Constant variance model:

 $\Sigma_{i} = I_{n(i)}\sigma_{u}^{2} \implies \widetilde{\Sigma}_{i} = (I_{n(i)-1} + J_{n(i)-1})\sigma_{u}^{2}$

Diagonal model:

$$\Sigma_{i} = \operatorname{diag}(\sigma_{1}^{2}, \sigma_{2}^{2}, ..., \sigma_{n}^{2}) \Rightarrow \widetilde{\Sigma}_{i} = \operatorname{diag}(\sigma_{2}^{2}, \sigma_{3}^{2}, ..., \sigma_{n}^{2}) + J_{n-1}\sigma_{1}^{2}$$

Factor-analytic model (one factor):

$$\Sigma_i = \lambda \lambda^T \text{ , where } \lambda^T = \left(\lambda_1, \lambda_2, \ldots\right) \Rightarrow \widetilde{\Sigma}_i = \widetilde{\lambda} \, \widetilde{\lambda}^T \text{ with } \widetilde{\lambda}^T = \left(\lambda_2 - \lambda_1, \lambda_3 - \lambda_1, \ldots\right)$$

Unstructured model:

Maximum $n_i(n_i-1)/2$ free parameters for $\widetilde{\Sigma}_i$

Implement conditional model for $\widetilde{\Sigma}_i$ via unconditional model for Σ_i

$$\widetilde{u}_{ik} = u_{ik} - u_{ib(i)} \Rightarrow \widetilde{u}_{ik} = \sum_{k=1}^{n} x_{ik} u_{ik}$$

Example 1: Smoking cessation data

		Dummy variables			5
Baseline treatment	Treatment	x_{i1}	<i>x</i> _{<i>i</i>2}	<i>x</i> _{<i>i</i>3}	X _{i4}
Α	A	0	0	0	0
	В	-1	1	0	0
	С	-1	0	1	0
	D	-1	0	0	1

		Dummy variables			5
Baseline treatment	Treatment	x_{i1}	X_{i2}	x _{i3}	<i>x</i> _{<i>i</i>4}
В	A	1	-1	0	0
	В	0	0	0	0
	С	0	-1	1	0
	D	0	-1	0	1
С	A	1	0	-1	0
	В	0	1	-1	0
	С	0	0	0	0
	D	0	0	-1	1

Equivalence of conditional and unconditional model

Conditional model:

$$\operatorname{var}(\eta_i \mid u_{i1}) = 0 \oplus \widetilde{\Sigma}_i$$
, where $\eta_i^T = (\eta_{i1}, \eta_{i2}, ...)$ and $b(i) = 1$

Unconditional model:

 $\operatorname{var}(\eta_i) = \Sigma_i$

Both models are equivalent in the sense that for any contrast $c^T \eta_i$

$$\operatorname{var}(c^{T}\eta_{i} \mid u_{i1}) = c^{T}(0 \oplus \widetilde{\Sigma}_{i})c = c^{T}\Sigma_{i}c = \operatorname{var}(c^{T}\eta_{i})$$

Equivalence (continued)

$$\operatorname{var}(c^{T}\eta_{i} \mid u_{i1}) = c^{T}(0 \oplus \widetilde{\Sigma}_{i})c = c^{T}\Sigma_{i}c = \operatorname{var}(c^{T}\eta_{i})$$

To see this, let $c^T = (c_1, c_2^T)$, where c_1 is the first element of c and c_2 is

the remainder. Then $c^T (0 \oplus \widetilde{\Sigma}_i) c = c_2^T \widetilde{\Sigma}_i c_2 = c_2^T D_i \Sigma_i D_i^T c_2 = (c_1, c_2^T) \Sigma_i (c_1, c_2^T)^T$.

Equivalence (continued)

- Models fully equivalent with identity link and normal distribution
- Models not equivalent with other link functions and distributions

Example 1:

- Smoking cessation data
- Changed baseline treatment in some trials
- Used adaptive Gaussian quadrature (GLIMMIX procedure of SAS)

•
$$\Sigma_i = I_{n(i)} \sigma_u^2 \implies \widetilde{\Sigma}_i = (I_{n(i)-1} + J_{n(i)-1}) \sigma_u^2$$

Table 1: Smoking cessation data (Example 1)				
		Standard		
	Estimate	error		
Baseline contrasts usi	ng original baseline trea [.]	tments (A)		
$d_{_{AB}}$	0.4192	0.2959		
d_{AC}	0.7407	0.1738		
$d_{_{AD}}$	0.9484	0.3292		
Baseline contrasts taking B as baseline treatment in trials 3-5				

$d_{_{AB}}$	0.4415	0.2982
d_{AC}	0.7449	0.1751
d_{AD}	0.9580	0.3315

Table 1: Smoking cessation data (Example 1 continued)				
		Standard		
	Estimate	error		
Baseline contrasts (2) tal	king C as baseline tr	reatment in trials 6-15		
$d_{_{AB}}$	0.4407	0.3154		
d_{AC}	0.7773	0.1868		
$d_{\scriptscriptstyle AD}$	0.9821	0.3493		
Two-way model estimates	5			
$\alpha_{B} - \alpha_{A}$	0.3865	0.2387		
$\alpha_{C} - \alpha_{A}$ $\alpha_{D} - \alpha_{A}$	0.7166	0.1374		
$\alpha_D - \alpha_A$	0.9199	0.2720		

Table 2: Smoking cessation data (Example 1 continued); constant variance model for u_{ii}

	Estimate	Standard error
Adjusted means \$		
$\alpha_A + \overline{\beta}_{\bullet}$	-2.4235 a	0.1107
$\alpha_{\scriptscriptstyle B} + \overline{\beta_{\scriptscriptstyle \bullet}}$	-2.0366 ab	0.2106
$\alpha_{c} + \overline{\beta}_{\bullet}$	-1.7068 b	0.0971
$\alpha_D + \overline{\beta}_{\bullet}$	-1.5047 b	0.2273

\$ Adjusted means (computed on the logit scale) followed by a common letter are not significantly different at $\alpha = 5\%$ according to a Wald-test.

Table 3: Analysis of smoking cessation data based on two-way model.

	Standard			
Parameter	Estimate	error	AIC	
Constant varianc	e:			
σ_u^2	0.09068	0.02810	391.20	
Diagonal (treatm	ent-specific varia	nce):		
$\sigma^2_{u(1)}$	0.5599	0.2626	365.91	
$\sigma^2_{u(2)}$	0	-		
$\sigma^2_{u(3)}$	0	-		
$\sigma^2_{u(4)}$	0.1292	0.2411		

Table 4: Analysis of smoking cessation data based on two-way model.

		Standard	
Parameter	Estimate	error	AIC
Constant variance:			
σ_u^2	0.09068	0.02810	391.20
Factor-analytic:			
λ_1	0.4969	0.1736	364.02
λ_2	0	-	
λ_3	-0.2423	0.1157	
λ_4	0.05856	0.1985	

Fitting the FA model with SAS

2. Modelling individual patient data

Study effects fixed or random?

Study effects fixed

- Inference based on within-study information
- Inference Protected by randomization
- Obeys principle of concurrent control
- Can only assess relative treatment effects

Study effects random

- Recovery of inter-study information
- Need to assume that studies in NMA are random sample from some urne
- Can also assess absolute treatment effects

2. Modelling individual patient data

Recent discussion on arm-based (AB) versus contrast-based (CB) models

- The discussion focusses much on estimation of relative treatment effects (CB) versus absolute treatment effects (AB)
- I think this becomes a non-issue when a study main effect is included in the AB model
- The main issue is whether or not to recover the inter-study information, i.e. whether the study main effect is taken as fixed or random

Dias S, Ades AE 2016 Absolute or relative effects? Arm-based synthesis of trial data (Commentary). Research Synthesis Methods 7, 23-28.

Hong, H., Chu, H., Zhang, J., Carlin, B.P. 2016 Rejoinder to the discussion of "a Bayesian missing data framework for generalized multiple outcome mixed treatment comparisons," by S. Dias and A.E. Ades. Research Synthesis Methods 7, 29-33.

Notation for treatment summaries

- s_i = vector of treatment summaries in *i*-th trial (means, log odds, etc)
- sorted such that the baseline for the *i*-th trial is in the first position
- Pairwise contrasts of all treatments to baseline are computed by

$$z_i = D_i s_i ,$$

where $D_i = \begin{pmatrix} -1_{n(i)-1} & I_{n(i)-1} \end{pmatrix}$ and n(i) = number of treatments in *i*-th trial

• Stacking trials i = 1, 2, ..., m, we may write

$$z = Ds$$
,
where $z^T = (z_1^T, z_2^T, ..., z_m^T)$, $s^T = (s_1^T, s_2^T, ..., s_m^T)$ and $D = \bigoplus_{i=1}^m D_i$.

Basic model for treatment summaries

 $s = \eta + e$,

where

$$\eta^{T} = (\eta_{1}^{T}, \eta_{2}^{T}, ..., \eta_{m}^{T})$$
 is a vector holding linear predictors η_{ik}
 e = estimation errors associated with summary measures s
 $e \sim N(0, R)$

$$R = \bigoplus_{i=1}^{m} R_i$$
, where $R_i = \operatorname{var}(s_i \mid \eta_i)$

Two-way model for linear predictor vector

$$\eta = X_{\beta}\beta + X_{\alpha}\alpha + u$$

where

- β = fixed trial main effects with design matrix X_{β}
- α = fixed treatment main effects with design matrix X_{α}
- u = random between-trial effects with $u \sim N(0, \Sigma)$ and $\Sigma = \bigoplus_{i=1}^{m} \Sigma_i$

Hence,

$$E(s) = E(\eta) = X_{\beta}\beta + X_{\alpha}\alpha \text{ and}$$
$$var(s) = V = \Sigma + R$$

Sweeping out trial main effects

 $z^* = \overline{P}s$,

where $\overline{P} = I - P$ and $P = X_{\beta} \left(X_{\beta}^{T} X_{\beta} \right)^{-} X_{\beta}^{T}$

This is equivalent to computing contrasts to baseline per trial: z = Ds

$$\Leftrightarrow \overline{P} = D^T (DD^T)^{-1} D$$
 and hence $z^* = D^T (DD^T)^{-1} z$

Normal equations for $z^* = \overline{Ps}$ yield same solution for γ as those for s

Proof in De Hoog, Speed & Williams (1990)

Equivalence of REML estimates of variance components

REML

- operates on contrasts free of fixed effects
- is invariant to the choice of contrasts (Harville, 1977)

After sweeping out the trial effect β via z = Ds, the conditional and the

unconditional variance-covariance models are identical:

$$\operatorname{var}(z) = DVD^T = \widetilde{V}$$
, where $\widetilde{V} = \widetilde{\Sigma} + DRD^T$ and $\widetilde{\Sigma} = \bigoplus_{i=1}^m \widetilde{\Sigma}_i$.

\Rightarrow REML estimates of variance components coincide under both models

Example 1 (continued)

- Empirical log-odds of treatment versus baseline
 - \Rightarrow baseline contrast on logit scale
- In case a treatment has no successes or failures, a correction factor of a half is added to both success and failure counts
- Compute error variance R of log-odds using GLM package
- Baseline treatment differs among trials
- Basic parameters $d_{\scriptscriptstyle AB}$, $d_{\scriptscriptstyle AC}$ and $d_{\scriptscriptstyle AD}$
- Functional parameters $d_{\rm BC}=d_{\rm AC}-d_{\rm AB}$, $d_{\rm BD}=d_{\rm AD}-d_{\rm AB}$, $d_{\rm CD}=d_{\rm AD}-d_{\rm AC}$

Test of global null hypothesis

- $H_0: d_{AB} = d_{AC} = d_{AD} = 0 \iff H_0: \gamma_A = \gamma_B = \gamma_C = \gamma_D$
- χ² = 4.62
- 3 numerator d.f.
- 21 denominator d.f.
- *p* = 0.0124

Both analyses identical!

Table 3: Summary measures analysis for smoking cessation data (REML). We assumed $\Sigma_i = I_{n(i)}\sigma_u^2$ for heterogeneity under the two-way model. This is equivalent to fitting $\widetilde{\Sigma}_i = (I_{n(i)-1} + J_{n(i)-1})\sigma_u^2$ for the baseline-contrast model.

Contrast Baseline Two-way contrasts § model §			Standard error	
		Estimate		
$d_{_{AB}}$	$\alpha_{B} - \alpha_{A}$	0.3978	0.3305	
$d_{\scriptscriptstyle AC}$	$\alpha_{c} - \alpha_{A}$	0.7013	0.1972	
$d_{\scriptscriptstyle AD}$	$\alpha_D - \alpha_A$	0.8642	0.3749	

§ Results are identical for both analyses

Table 3 (continued)

Contrast			Standard	
Baseline contrasts	Two-way model	Estimate	error	
_	$\alpha_A + \overline{\beta}_{\bullet}$	Adjusted means \$ -2.3792 a	0.1553	
-	$\alpha_A + \overline{\beta}_{\bullet}$ $\alpha_B + \overline{\beta}_{\bullet}$	-1.9815 ab	0.2886	
-	$\alpha_{c} + \overline{\beta}_{\bullet}$	-1.6779 b	0.1352	
-	$\alpha_D + \overline{\beta}_{\bullet}$	-1.5150 b	0.3100	

\$ Adjusted means followed by a common letter are not significantly different at $\alpha = 5\%$ according to a t-test using the Kenward-Roger (1997) method for degrees of freedom and variance adjustments

Take home message up to here

Compared:

- Baseline contrast model (conditional)
- Two-way model (unconditional)

$$\eta_{ik} = \mu_i + U_{ik} \delta_{ib(i)k}$$
$$\eta_{ik} = \beta_i + \alpha_k + u_{ik}$$

Full equivalence:

- Summary data
- Individual patient data with identity link and normal errors

Very similar results:

- All other cases
- But: Baseline contrast model is not invariant to choice of baseline!

Example

- Trial network with three treatments (A, B, C)
- Three types of trial: A vs B, A vs C and B vs C
- Consider evidence on B vs C
- Need to combine direct and indirect evidence on treatment comparisons
 Direct comparison: Trials B vs C
 Indirect comparison: Trials A vs B and A vs C
- Inconsistency (incoherence):

 \Rightarrow direct and indirect comparisons for *B* vs *C* do not agree

Reasons for inconsistency

- A new drug may be tested on a population of patients, for which a standard drug did not show a satisfactory effect. The effect relative to a placebo in such a selected population may differ from the effect in a population that is not selected in this way.
- Inconsistency may also occur in open-label or imperfectly blinded trials (Lumley, 2002)

Other term

• Incoherence (Lumley, 2002)

Inconsistency relation

- Assume that B is baseline treatment in trials B vs C
- Use functional parameter to model effect of C :

 $d_{BC} = d_{AC} - d_{AB}$

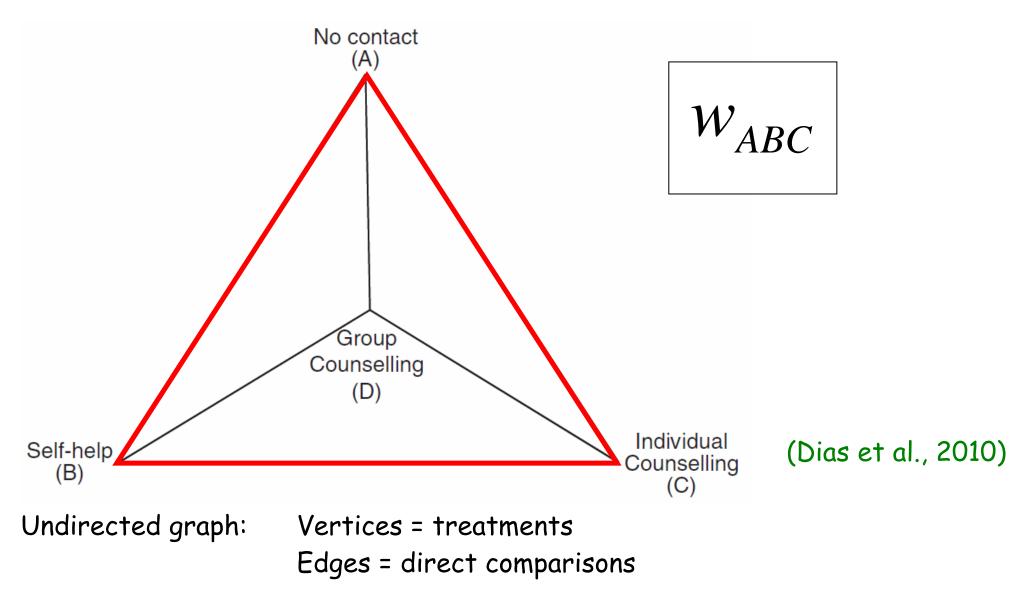
• Modification in case of inconsistency :

 $d_{BC} = d_{AC} - d_{AB} + w_{ABC}$ (inconsistency relation)

- \Rightarrow use this for treatment C in trials where B is baseline
- If W_{ABC} is significant, inconsistency is established

Loops

Network forms a closed loop between *A*, *B* and *C* in an undirected graph with vertices corresponding to treatments and edges representing direct comparisons between treatments (Lu and Ades, 2006)



Using inconsistency factors is not easy!

- Modeling and interpretation of inconsistency become more difficult in the presence of multi-arm trials, and fitting the model may require careful programming
- The types of inconsistency that can be tested using inconsistency factors are not invariant to the choice of basic parameters
- "... we have not managed to find a general formula of a mechanical routine to count [the number of independent consistency relations]" (Lu & Ades, 2006)
- "In practice, an inconsistency model must be programmed very carefully, and the [number of independent inconsistencies] may have to be counted by hand." (Lu & Ades, 2006)

Example:

- Structure { A vs B, A vs C, A vs B vs C}.
- This could be modeled by parameters $\left(d_{AB},d_{AC}
 ight)$, $\left(d_{AB},d_{BC}
 ight)$, or $\left(d_{AC},d_{BC}
 ight)$
- The three parameterizations are essentially equivalent
- But: If (d_{AB}, d_{AC}) is chosen, then the inconsistency relation

 $d_{BC} = d_{AC} - d_{AB} + w_{ABC}$ cannot be used, because parameter d_{BC} is already implicitly defined by the parameterization of three-arm trial A vs B vs C. (Lu & Ades, 2006)

Here we keep it simple

• Node-splitting algorithm (Dias et al., 2010)

 \Rightarrow Use inconsistency factors one comparison at a time

 $w_{AB} = 1$ for B when A & B in same trial $w_{AB} = 0$ otherwise

(for details on more complex approaches see Lu & Ades, 2006)

Table 4: Estimates for inconsistency factors (w_{AB}) when fitted one-at-a-time in two-way model trial-by-treatment for Thrombolytics data (Dias et al. 2010)

Treate	nents	W_{AB}	Standard	p-value	AIC [§]
A	В		error	·	
1	2	-0.2038	0.2296	0.3749	593.79
1	3	0.09045	0.1040	0.3843	593.83
1	5	0.1206	0.1204	0.3164	593.58
1	7	-0.2678	0.2200	0.2235	593.09
1	8	-0.1799	0.5591	0.7476	594.48
1	9	-0.4050	0.2517	0.1076	591.94
2	7	-0.1291	0.3986	0.7461	594.48
2	8	-0.1352	0.4464	0.7619	594.49
2	9	-0.3005	0.3557	0.3983	593.87
3	4	-0.4568	0.6620	0.4902	594.10
3	5	-0.1206	0.1204	0.3164	593.58
3	7	0.2780	0.2091	0.1835	592.80
3	8	0.2559	0.4529	0.5720	594.26
3	9	1.1924	0.4094	0.0036	584.52

§ The two-way model without inconsistency factor has AIC = 592.59.

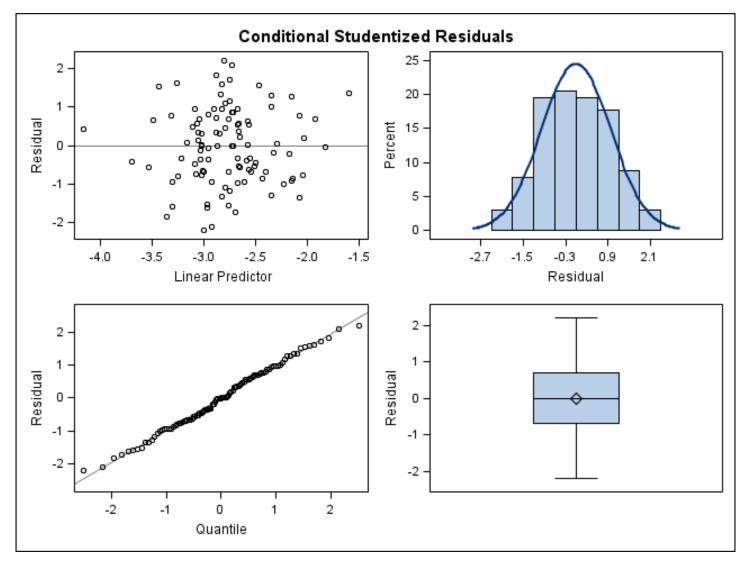


Fig. 1 Residual plots for two-way model (5) fitted to Thrombolytics data.

Table 5: Observations with absolute studentized residuals > 2 inThrombolytics data based on an additive model with main effects for trialand treatment.

Treatment	Trial	Cases	Sample size	Studentized residual
3	44	5	210	-2.20288
3	45	3	138	-2.09658
9	44	17	211	2.20280
9	45	13	147	2.09651

Extending the notion of inconsistency

- Comparison of direct and indirect evidence on a contrast
- Presence of a new treatment in a trial may well modify the direct difference between A and B (Lu et al., 2011)

 \Rightarrow need to compare direct comparisons from different types of trial

Idea

 \Rightarrow Test interaction in trial type \times treatment classification

	Treatment				
Trial type	A	В	С		
1	X	×			
2	X		X		
3		×	Х		

Fig. 2: Trial type \times treatment classification for network {A vs B, A vs C, B vs C}.

- n = 3 treatments
- m = 3 trial types
- c = 6 cells filled
- \Rightarrow c n m + 1 = 1 d.f. for interaction trial type \times treatment

	Treatment				
Trial type	A	В	С		
1	X	X	Х		
2	X	×			

Fig. 3: Trial type \times treatment classification for network {A vs B vs C, A v. B}.

- n = 3 treatments
- m = 2 trial types
- c = 5 cells filled
- \Rightarrow c n m + 1 = 1 d.f. for interaction trial type \times treatment

	Treatment				
Trial type	A	В	С		
1	X	X			
2	X		X		
3	X	X	X		

Fig. 4: Trial type \times treatment classification for network {A vs B, A vs C, A vs B vs C}.

- n = 3 treatments
- m = 3 trial types
- c = 7 cells filled
- \Rightarrow c n m + 1 = 2 d.f. for interaction trial type \times treatment

Model to test for inconsistency

$$\eta_{ijk} = \delta_j + \beta_{ij} + \alpha_k + (\alpha \delta)_{jk} + u_{ijk}$$

 δ_{i} = fixed main effect for the *j*-th trial type

 $(\alpha \delta)_{jk}$ = fixed effect for the interaction jk-th trial type × treatment

- Heterogeneity u_{ijk} can be separated from inconsistency $(\alpha \delta)_{jk}$ provided there are several trials per trial type (design)
- Heterogeneity is a property of variation among trials within the same trial type, while inconsistency affects variation between trial types

(Piepho, Madden and Williams, 2012, Biometrics)

Example 2 (Thrombolytics data):

- Wald test for the trial type-treatment interaction in the
- $\chi^2 = 13.40$ on 10 d.f.; *p* = 0.2020
- Bonferroni-adjustment for test of inconsistency factor w_{39} : p = 0.0504
- In summary, there is overall good agreement between our analysis and that presented in Dias et al. (2010)

Example 1 (Smoking cessation data):

- c n m + 1 = 18 8 4 + 1 = 7 degrees of freedom for inconsistency
- Adaptive Gaussian quadrature to fit a logit model by ML
- $\chi^2 = 5.81$ (p = 0.5627) with heterogeneity (u_{ik})
- $\chi^2 = 12.18$ (p = 0.0948) without heterogeneity

For comparison: Model with baseline contrasts (Lu et al., 2011)

- $\chi^2 = 4.71$ with heterogeneity
- $\chi^2 = 15.22$ without heterogeneity

Example 3:

- Diabetes study of Senn et al. (2013)
- 26 trials
- 15 different designs (one three-arm trial)
- 10 treatments, mostly involving glucose-lowering agent added to baseline sulfonylurea treatment
- Continuous outcome: blood glucose change

Factor symbol	Factor description
G	Group of trials, trial type, design
S	Study, trial
Т	Treatment

Two-way ANOVA

 $S \times T = S + T + S.T$

Model for inconsistency

$$(G/S) \times T = G + G.S + T + G.T + G.S.T$$

inconsistency heterogeneity

EFSPI, Braine-l'Alleud, 22 November 2016

Locating inconsistency by detachment of individual designs

Factor symbol	Factor description
D1	D1 = 1 for design 1, D1 = 0 otherwise
G	Group of trials, trial type, design
S	Study, trial
Т	Treatment

Design	Design	No.	D.f.	Effect G.S.T fixed			
	no. (k)	of	for	Dł	κ.Τ	Dk.G.T	
		trials	Dk.T	Wald	p-value	Wald	p-value
				statistic		statistic	
acar:plac	1	1	1	0.09	0.7699	22.45	0.0010
acar:SUal	2	1	1	0.01	0.9091	22.52	0.0010
metf:plac	4	3	1	0.46	0.4976	22.07	0.0012
metf:acar:plac	5	1	2	0.15	0.9297	22.39	0.0004
metf:SUal	6	1	1	15.02	0.0001	7.52	0.2758
piog:plac	8	1	1	5.28	0.0215	17.25	0.0084
piog:metf	9	1	1	5.40	0.0201	17.13	0.0088
piog:rosi	10	1	1	0.05	0.8280	22.49	0.0010
rosi:plac	11	6	1	6.24	0.0125	16.30	0.0122
rosi:metf	12	2	1	0.01	0.9199	22.52	0.0010
rosi:SUal	13	1	1	15.76	<0.0001	6.77	0.3424

Design	Design	No.	D.f.	Effect G.S.T random			
	no. (k)	of	for	Dł	κ.Τ	Dk.G.T	
		trials	Dk.T	Wald	p-value	Wald	p-value
				statistic		statistic	
acar:plac	1	1	1	0.02	0.8889	2.25	0.8782
acar:SUal	2	1	1	0.01	0.9430	2.26	0.8765
metf:plac	4	3	1	0.04	0.8379	2.22	0.8814
metf:acar:plac	5	1	2	0.07	0.9634	2.18	0.8129
metf:SUal	6	1	1	1.63	0.2343	0.92	0.9835
piog:plac	8	1	1	0.43	0.5299	1.96	0.9062
piog:metf	9	1	1	0.43	0.5318	1.94	0.9081
piog:rosi	10	1	1	0.01	0.9065	2.27	0.8751
rosi:plac	11	6	1	0.74	0.4112	1.87	0.9168
rosi:metf	12	2	1	0.01	0.9276	2.25	0.8795
rosi:SUal	13	1	1	1.79	0.2146	0.66	0.9930

Case-deletion plots and residual diagnostics

(1) Fit model (G/S) \times T and compute G.T means

(2) Fit model G + T to G.T means

 \Rightarrow Drop a G.T mean and compute T means based on model G + T

 \Rightarrow Compute studentized residuals for G.T means from model G + T

4. Testing inconsistency

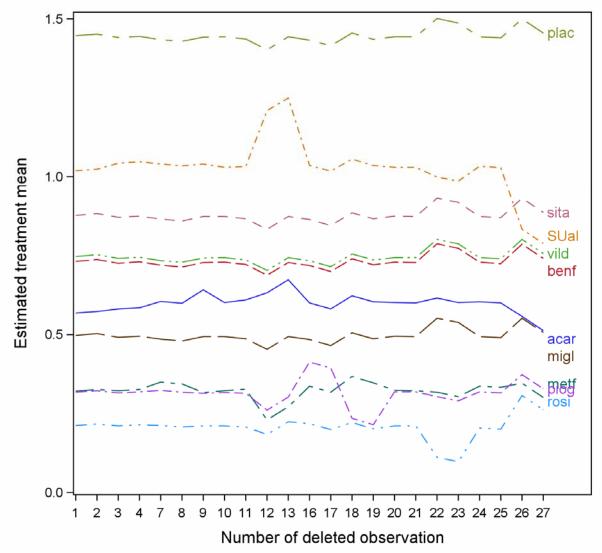


Fig. 1: Case-deletion plot of treatment means. Case-deletion means based on a fit of the model G + T using design × treatment mean estimates obtained from fitting model (2) taking heterogeneity G.S.T as random. To obtain diagnostics for treatment means (factor T), we prevented an intercept from being fitted and imposed a sum-to-zero restriction on the design effects G.

4. Testing inconsistency

Design	Observation	Treatment	G.S.T random		
			PRESS residual	Studentized res.	
1	1	Acar	0.0785	0.1453	
	2	plac	-0.0785	-0.1453	
2	3	acar	0.0619	0.1056	
	4	SUal	-0.0619	-0.1056	
3	5	benf			
	6	plac			
4	7	metf	-0.0781	-0.2282	
	8	plac	0.0781	0.2282	
5	9	acar	-0.1507	-0.2601	
	10	metf	0.0036	0.0075	
	11	plac	0.1193	0.2273	
6	12	metf	0.6095	1.1614	
	13	SUal	-0.6095	-1.1614	
7	14	migl			
	15	plac			

4. Testing inconsistency

Design	Observation	Treatment	G.S.T random		
			PRESS residual	Studentized res.	
8	16	piog	-0.2802	-0.5585	
	17	plac	0.2802	0.5585	
9	18	metf	-0.2927	-0.5779	
	19	piog	0.2927	0.5779	
10	20	piog	-0.0073	-0.0141	
	21	rosi	0.0073	0.0141	
11	22	plac	-0.2100	-0.6391	
	23	rosi	0.2100	0.6391	
12	24	metf	-0.0616	-0.1610	
	25	rosi	0.0616	0.1610	
13	26	rosi	-0.6733	-1.2693	
	27	SUal	0.6733	1.2693	
14	28	plac		•	
	29	sita		•	
15	30	plac		•	
	31	vild			

Example 4:

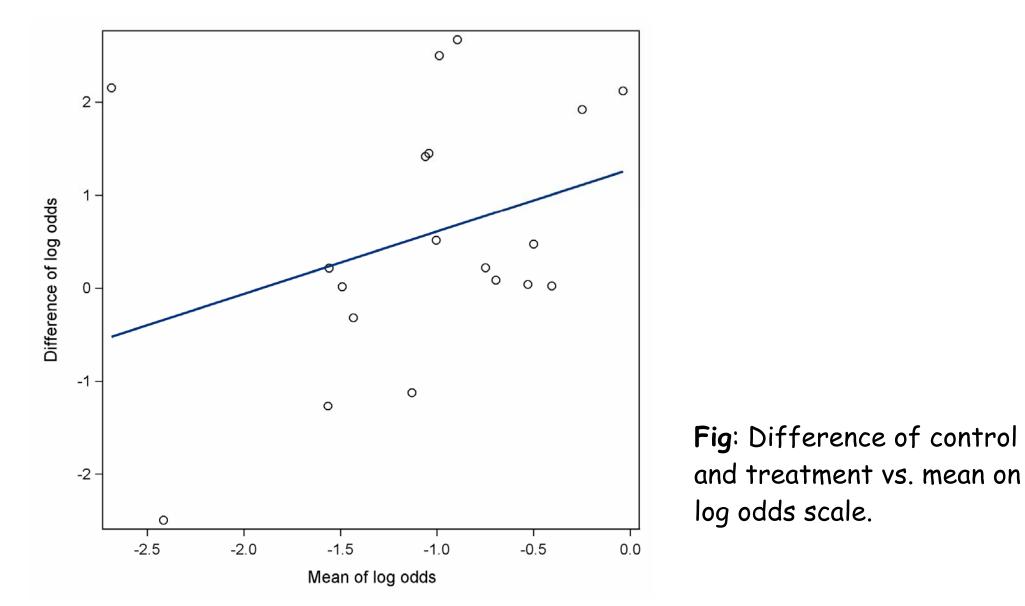
- Sclerotherapy data in Sharp and Thompson (2000)
- 19 trials
- 2 treatments (control and treatment)
- Number of deaths and bleeds

			tak	ten from Pag	liaro [12].		9 scierotnerapy	
Trial	Deaths	Control group Bleeds	Total	Tro Deaths	eatment grou Bleeds	p Total	Quality*	Duration [†]
1	14	22	36	2	3	35	6	24
2	29	30	53	12	5	56	38	35
3	6	6	18	6	5	16	31	36
4	6	9	22	4	3	23	0	19
5	34	31	46	30	11	49	38	44
6	14	9	60	13	19	53	52	13
7	27	26	60	15	17	53	75	24
8	26	29	69	16	10	71	71	13
9	19	14	41	10	12	41	81	36
10	2	3	20	0	0	21	63	17
11	18	13	41	18	9	42	75	24
12	21	14	35	20	13	33	71	61
13	23	23	138	46	31	143	68	22
14	24	19	51	19	20	55	58	24
15	14	13	72	18	13	73	83	15
16	4	12	16	2	3	13	NA	16
17	8	5	28	6	3	21	NA	30
18	6	0	19	7	4	18	NA	24
19	5	2	24	5	6	22	NA	16

Table I. Numbers of deaths and bleeds and total numbers of patients in 19 sclerotherapy trials

* Quality is calculated as a percentage of the maximum possible score, based on a scoring system which took into account how various aspects of the trial were handled, such as randomization, compliance, sample size and withdrawals [12]. Higher scores indicate higher quality, NA = not available.

[†] Duration is the average length of follow-up in months.



Regress expected treatment difference baseline treatment

$$\eta_{i2} - \eta_{i1} = \theta_0 + \theta_1 \eta_{i1} \Leftrightarrow \eta_{i2} = \theta_0 + (\theta_1 + 1) \eta_{i1}$$

 η_{i1} = expected value of the baseline treatment in the *i*-th trial

 η_{i2} = expected value of the new treatment

Schmid et al. (1998), Sharp & Thompson (2000)

Ignoring heterogeneity among the trials, this type of model is commensurate with a multiplicative model of the form ...

A commensurate model (joint regression model)

$$\eta_{ik} = lpha_k + \gamma_k eta_i$$
 ,

where α_k = intercept for k-th treatment

 γ_k = slope for k-th treatment

 β_i = effect (latent variable) for *i*-th trial (fixed!)

 \Rightarrow Finlay-Wilkinson (1963) regression in plant breeding!

Identifiability constraints
$$\sum_{k=1}^{n} \gamma_k = n$$
 and $\sum_{i=1}^{m} \beta_i = 0$ (Ng & Grunwald, 1997).

• With just two treatments, rearranging and comparing coefficients yields:

$$\theta_0 = \alpha_2 - \alpha_1 \gamma_2 / \gamma_1$$
$$\theta_1 = \gamma_2 / \gamma_1 - 1$$

- With Finlay-Wilkinson model easy to extend to more than 2 treatments!
- Add random effect for heterogeneity:

$$\eta_{ik} = \alpha_k + \gamma_k \beta_i + u_{ik}$$

Interpretation of treatment effects more difficult

$$\eta_{i1} - \eta_{i2} = \alpha_1 - \alpha_2 + (\gamma_1 - \gamma_2)\beta_i$$

 \Rightarrow contrast depends on study

Factor-analytic model (β_i random!)

We may define the composite random term

 $f_{ik} = \gamma_k \beta_i + u_{ik}$

and set the linear predictor equal to

 $\eta_{ik} = \alpha_k + f_{ik}$

For identifiability, we require $\sigma_{\beta}^2 = var(\beta_i) = 1$, while γ_1 and γ_2 are unconstrained. Thus, we have for two treatments

$$\operatorname{var}\begin{pmatrix} f_{i1} \\ f_{i2} \end{pmatrix} = \gamma \gamma^{T} + I_{2} \sigma_{u}^{2} ,$$

where $\gamma^T = (\gamma_1, \gamma_2)$. (Piepho, 1997, *Biometrics*) EFSPI, Braine-I'Alleud, 22 November 2016

 Table: Fit of joint regression model (sclerotherapy data).

	Fixed-effe	cts model	Random-eff	Random-effects model		
Parameter	Estimate	Standard Error	Estimate	Standard Error		
$lpha_{_1}$ (control)	-0.927	0.261	-0.755	0.227		
$lpha_2$ (new treatment)	-1.247	0.089	-1.305	0.145		
γ_1	2.140	0.257	0.779	0.238		
${\gamma}_2$	-0.140	0.257	-0.106	0.186		
σ_u^2	0.013	0.036	0.201	0.128		
$ heta_0$	-1.308	0.131	-1.408	0.235		
$ heta_1$	-1.065	0.112	-1.137	0.242		
$\alpha_2 - \alpha_1$	-0.320	0.281	-0.550	0.286		

Comparison with compound symmetry (CS) model (random model)

 $\gamma_1 = \gamma_2 = 1$

 \Rightarrow CS model = two-way model with random study effects

Model	AIC
Factor-analytic	243.15
Compound symmetry	244.61

Example 5: Diabetes data

- Incidence of diabetes with various antihypertensive drugs
- Binomial response (cases/total counts)
- 6 treatments: ACE Inhibitor, ARB, CCB, Diuretic, Placebo, Beta-blocker
- 22 studies
- Treatment x trial classification very incomplete

(Elliot and Meyer, 2007, Lancet)

	Year	Duration (years)	Drug 1	New cases of diabetes/total	Drug 2	New cases of diabetes/total	Drug 3	New cases of diabetes/total
AASK ²⁵	2006	3.8	ACE inhibitor	45/410	β blocker	70/405	CCB	32/202
ALLHAT ²⁶	2002	4.0	ACE inhibitor	119/4096	CCB	154/3954	Diuretic	302/6766
ALPINE ²⁷	2003	1.0	ARB	1/196	Diuretic	8/196		
ANBP-218	2005	4.1	ACE inhibitor	138/2800	Diuretic	200/2826		
ASCOT ²⁸	2005	5.5	β blocker	799/7040	CCB	567/7072		
CAPPP ²⁹	1999	6.1	ACE inhibitor	337/5183	β blocker	380/5230		
CHARM ³⁰	2003	~3.1	ARB	163/2715	Placebo	202/2721		
DREAM ³¹	2006	~3.0	ACE inhibitor	449/2623	Placebo	489/2646		
EWPHE ³²	1991	4.7	Diuretic	29/416	Placebo	20/424		
FEVER ²⁰	2005	3.3	CCB	177/4841	Placebo	154/4870		
HAPPHY ³³	1987	3.8	β blocker	86/3297	Diuretic	75/3272		
HOPE ³⁴	2001	4.5	ACE inhibitor	102/2837	Placebo	155/2883		
INSIGHT ³⁵	2000	3.0	CCB	136/2508	Diuretic	176/2511		
INVEST ³⁶	2003	4.0	β blocker	665/8078	CCB	569/8098		
LIFE ³⁷	2002	4.8	ARB	242/4020	β blocker	320/3979		
MRC-E ³⁸	1992	5.8	β blocker	37/1102	Diuretic	43/1081	Placebo	34/2213
NORDIL ³⁹	2000	4.5	β blocker or diuretic	251/5059	CCB	216/5095		
PEACE ⁴⁰	2004	4.8	ACE inhibitor	335/3432	Placebo	399/3472		
SCOPE ⁴¹	2003	3.7	ARB	93/2167	Placebo	115/2175		
SHEP ⁴²	1998	3.0	Diuretic	140/1631	Placebo	118/1578		
STOP-243	1999	4.0	ACE inhibitor	93/1970	β blocker or diuretic	97/1960	CCB	95/1965
VALUE44	2004	4·2	ARB	690/5087	CCB	845/5074		

Factor-analytic model

$$\eta_{ik} = \alpha_k + f_{ik}$$
 with $f_{ik} = \gamma_k \beta_i + u_{ik}$

$$\operatorname{var}(f_k) = \gamma \gamma^T + I_6 \sigma_u^2 \quad \text{with } \gamma^T = (\gamma_1, \gamma_2, \dots, \gamma_6) \text{ and } f_i^T = (f_{i1}, f_{i2}, \dots, f_{i6})$$

$$\operatorname{var}\begin{pmatrix} f_{i1} \\ f_{i2} \\ f_{i3} \\ f_{i4} \\ f_{i5} \\ f_{i6} \end{pmatrix} = \begin{pmatrix} \gamma_{1}^{2} + \sigma_{u}^{2} & \gamma_{1}\gamma_{2} & \gamma_{1}\gamma_{3} & \gamma_{1}\gamma_{4} & \gamma_{1}\gamma_{5} & \gamma_{1}\gamma_{6} \\ \gamma_{2}\gamma_{1} & \gamma_{2}^{2} + \sigma_{u}^{2} & \gamma_{2}\gamma_{3} & \gamma_{2}\gamma_{4} & \gamma_{2}\gamma_{5} & \gamma_{2}\gamma_{6} \\ \gamma_{3}\gamma_{1} & \gamma_{3}\gamma_{2} & \gamma_{3}^{2} + \sigma_{u}^{2} & \gamma_{3}\gamma_{4} & \gamma_{3}\gamma_{5} & \gamma_{3}\gamma_{6} \\ \gamma_{4}\gamma_{1} & \gamma_{4}\gamma_{2} & \gamma_{4}\gamma_{3} & \gamma_{4}^{2} + \sigma_{u}^{2} & \gamma_{4}\gamma_{5} & \gamma_{4}\gamma_{6} \\ \gamma_{5}\gamma_{1} & \gamma_{5}\gamma_{2} & \gamma_{5}\gamma_{3} & \gamma_{5}\gamma_{4} & \gamma_{5}^{2} + \sigma_{u}^{2} & \gamma_{5}\gamma_{6} \\ \gamma_{6}\gamma_{1} & \gamma_{6}\gamma_{2} & \gamma_{6}\gamma_{3} & \gamma_{6}\gamma_{4} & \gamma_{6}\gamma_{5} & \gamma_{6}^{2} + \sigma_{u}^{2} \end{pmatrix}$$

 Table: Parameter estimates for joint regression model (diabetes data).

	Fixed-eff	ects model	Random-effects model		
Parameter	Estimate	Standard Error	Estimate	Standard Error	
$lpha_{1}$ (ACE inhibitor)	-2.852	0.046	-2.864	0.156	
$lpha_2$ (ARB)	-2.907	0.061	-2.929	0.128	
α_3 (CCB)	-2.793	0.034	-2.759	0.125	
$lpha_4$ (Diuretic)	-2.492	0.069	-2.523	0.135	
$lpha_{5}$ (Placebo)	-2.710	0.052	-2.743	0.162	
$lpha_6$ (Beta-blocker)	-2.603	0.038	-2.572	0.136	

 Table: Parameter estimates for joint regression model (diabetes data).

	Fixed-effe	ects model	Random-effects model		
Parameter	Estimate	Standard Error	Estimate	Standard Error	
\mathcal{Y}_1 (ACE inhibitor)	1.193	0.088	0.694	0.128	
γ_2 (ARB)	0.738	0.083	0.533	0.132	
γ ₃ (CCB)	0.820	0.062	0.555	0.105	
γ_4 (Diuretic)	1.039	0.116	0.586	0.124	
γ_5 (Placebo)	1.198	0.084	0.723	0.130	
γ_6 (Beta-blocker)	1.013	0.071	0.602	0.108	
σ_u^2	0	-	0.0036	0.0042	

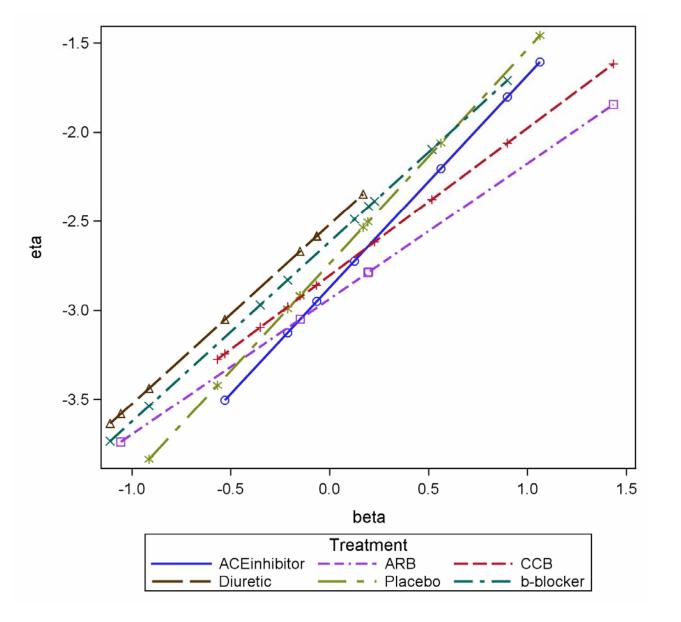


Fig. 2: Plot of fitted linear predictor (η_{ik}) versus estimated fixed trial effect (β_i) for the analysis of the diabetes example.

Modelling inconsistency

 δ_{i}

$$\eta_{ijk} = \delta_j + \beta_{ij} + \alpha_k + (\alpha \delta)_{jk} + u_{ijk}$$

= fixed main effect for the j-th trial type

 $(\alpha \delta)_{jk}$ = fixed effect for the interaction jk-th trial type × treatment

(significant inconsistency at P = 0.0021)

Modelling inconsistency by multiplicative terms

$$(\alpha \delta)_{jk} = (\gamma_k - 1)\delta_j \implies$$

$$\eta_{ijk} = \gamma_k \delta_j + \beta_{ij} + \alpha_k + u_{ijk}$$

Comparing models (1) and (2)

$$\chi^2 = 14.41$$
 (d.f. = 8, P = 0.0711)
AIC(1) = 417.8
AIC(2) = 418.2

 \Rightarrow Mild evidence that inconsistency well represented by multiplicative terms

Table VI. Parameter estimates for the multiplicative (joint regression) model for inconsistency (17) (diabetes data of Elliot and Meyer, 2007 [9]) based analysis for individual patient data (Example 2).

	Standard			Standard		
Parameter	Estimate	Error	Parameter	Estimate	Error	
α_1 (ACE inhibitor)	-3.0064	0.0731	δ_1	1.4349	0.1429	
α_2 (ARB)	-3.0774	0.0855	δ_2	0.0670	0.0770	
α_3 (CCB)	-2.9337	0.0468	δ_3	-1.0530	0.3802	
α_4 (Diuretic)	-2.6645	0.0619	δ_4	0.0874	0.0823	
α_5 (Placebo)	-2.9621	0.0783	δ_5	-0.4126	0.0670	
α_6 (Beta-blocker)	-2.6744	0.0383	δ_6	0.5708	0.0635	
γ_1	1.1803	0.1230	δ_7	0.1801	0.0630	
γ_2	0.8581	0.1259	δ_8	-0.3383	0.0726	
γ ₃	0.9190	0.0969	δ_9	0.1766	0.0831	
γ_4	0.8545	0.1156	δ_{10}	0.2478	0.0582	
γ ₅	1.4187	0.1217	δ_{11}	0.3452	0.0714	
γ_6	0.7694	0.0940	δ_{12}	0.2492	0.0486	
σ_u^2	0		δ_{13}	0.4945	0.0660	
			δ_{14}	-1.2521	0.1585	
			δ_{15}	-0.7975	0.1010	

ACE, angiotensin-converting enzyme; ARB, angiotensin-receptor blockers; CCB, calcium-channel blockers.

Inter-trial information: some remarks

- All models have fixed trial effect (some implicitly so)
- between-trial information on treatment effects is not recovered
- principle of concurrent control (Senn, 2000):

 \Rightarrow effect of treatments should only be judged by within-trial comparisons because only these are protected by randomization, provided that individual trials are randomized, and only these are based on the same groups of units (e.g., patients, plots, etc.).

 \Rightarrow By contrast, with a meta-analysis, there is usually no randomization between trials and groups of units for different trials may differ by important confounding factors.

• Approaches that exploit between-trial information (van Houwelingen et al., 2002; Dias and Ades, 2016) have been criticized by some authors.

- In practice, between-trial information is often low, so differences in analyses with fixed or random trial main effects are small, especially when the same set of treatments is tested in all trials.
- In complex multiple-treatment networks, however, between-trial information may be non-negligible.

Compared:

- Baseline contrast model (conditional)
- Two-way model (unconditional)

$$\eta_{ik} = \mu_i + U_{ik} \delta_{ib(i)k}$$

$$\eta_{ik} = \beta_i + \alpha_k + u_{ik}$$

Full equivalence:

- Summary data
- Individual patient data with identity link and normal errors

Very similar results:

- All other cases
- But: Baseline contrast model is not invariant to choice of baseline!

- Two-way model invariant to choice of baseline
- Two-way model much easier to fit using standard software
- Easy to fit two-way variance-covariance models for heterogeneity
- Joint regression model and factor-analytic models extend regression on baseline treatment when there are more than two treatments
 ⇒ easy to implement with two-way model

Lesson for multi-environment variety trials:

• Consider inconsistency of trials

References:

Madden, L.V., Piepho, H.P., Paul, P.A. (2016): Models and methods for network meta-analysis. *Phytopathology* **106**, 792-806.

Piepho, H.P. (2014): Network-meta analysis made easy: Detection of inconsistency using factorial analysis-of-variance models. *BMC Medical Research Methodology* **14**, 61.

Piepho, H.P., Madden, L.V., Williams, E.R. (2015): Multiplicative interaction in network meta-analysis. *Statistics in Medicine* **34**, 582-594.

Piepho, H.P., Möhring, J., Schulz-Streeck, T., Ogutu, J.O. (2012): A stagewise approach for analysis of multi-environment trials. *Biometrical Journal* **54**, 844-860.

Piepho, H.P., Williams, E.R., Madden, L.V. (2012): The use of two-way mixed models in multi-treatment meta-analysis. *Biometrics* 68, 1269-1277.

Thanks!