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Meta-analysis 
 
 Combine results from several trials / studies 

 Mostly clinical trials 

 Individual patient data (IPD) or treatment summaries 

 Two modelling approaches: 

(1) Model for contrasts with baseline treatment per trial 

(2) Two-way ANOVA model for trial  treatment classification 

 Option (1) most common; but we think option (2) is much simpler 

 

 compare both modelling options 

 investigate when they are equivalent 
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Example 1: 
Lu & Ades (2006) JASA 
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Network meta-analysis 
 

 More than two treatments tested in combined trials  

 Need to combine direct and indirect evidence on treatment comparisons 
 

Example 1: 

 Direct comparison:     Trials A vs B 

 Indirect comparison:  Trials A vs C and B vs C 
 

 Other names:  

Mixed-treatment comparisons (MTC) 

Mixed-treatment meta-analysis (MTM)
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Direct comparison (A vs B) 
Indirect comparison (via C) 

Example 1: 
Lu and Ades (2006)  
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(Dias et al., 2010) 

 

   

Undirected graph: Vertices = treatments 
 Edges = direct comparisons
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Example 2: Trombolytics data (Dias et al., 2010), nine treatments, 50 trials, 
response = mortalities (binomial)
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                                 B 

A                                                ?      Indirect comparison 

(Placebo) 

                                             C 

 

Comparison Mean difference   
 (contrast) 
B vs A -0.34 
C vs A -0.19 
 
 

15.019.034.0  CABABC MDMDMD  
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Combining direct and indirect evidence 
 
 Inverse variance method 
 Each estimate of mean difference (MD) is ‘weighted’ by the inverse of its 

variance 
 This leads to a ‘mixed’ result: 
 

indirectdirect

indirect
indirect

direct
direct

MDMD
MD

var
1

var
1

var
1

var
1

'mixed'





 

 

 

 (Georgia Salanti, Workshop Zurich 2011)
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Parallels with multi-environment trials (MET) 
 

 Incomplete genotype  environment trials  

(treatments = genotypes, environments = trials, studies) 

 Interested in genotype means across environments 

 Heterogeneity between environments  genotype-environment interaction 

 Modelling variance-covariance structure for heterogeneity  
 variance-covariance structures for genotype-environment interaction 
 variances and covariances not constant between genotypes 
 stability analysis, analysis of phenotypic stability 

 
 Also similar to incomplete block designs 
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Two modelling approaches 
 
(1) Contrast-based models 
 
 relative treatment effects compared to baseline (log relative risk, log 

odds ratio, mean difference)  
 Models for contrasts 

 
 
(2) Arm-based models  
 
 absolute treatment effects (log risk, log odds, treatment means) 
 Analysis-of-variance (ANOVA) models for factors study and treatment 
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Linear predictors for two treatments A and B 
 
A = baseline treatment 

B = new medication 

 
A:     

B: ABd    

 
  = baseline effect for the trial 

ABd  = effect of treatment B compared to baseline A
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Linear predictors for three treatments A, B and C 
 
(1) When A is baseline (A vs B and A vs C trials) 
 
A:     

B: ABd    

C: ACd    

 
(2) When B is baseline (B vs C trials) 
 
B:     

C: BCd    
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Basic parameters and functional parameters  

 

Basic parameters:  ,   ABd ACd
 

Functional parameters:    ABACBC ddd   
 

 

(2) When B is baseline (B vs C trials) 
 
B:     

C: ABAC dd     
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 kiib   = random effect of treatment k versus baseline  ib  in the i-th trial  

 
 








ibk
ibk

Uik ,0
,1

                                                           (Lu & Ades, 2006)

 

The linear predictor for the k-th treatment in the i-th trial is given by 

 = expected value of the baseline treatment  ib  in the i-th trial 

 kiibikiik U       

i   = baseline parameter in the i-th trial  

where  
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Random effects for baseline contrasts: 

    kibkiib dE    

 kibd  = treatment effects to be estimated across trials 

 

Fixed effects-part of the model:  

   kibikiik dUE   .  
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Heterogeneity between trials  

 Variance-covariance structure for  kiib  
in i-th trial, e.g. 

 

        2/var 2
11    ininkiib JI  

 
where  
 

nI   = n-dimensional identity matrix 

nJ   = n  n matrix of ones 
2   = a variance component for between-trial heterogeneity  

 in   = number of treatments in the i-th trial  
                                     (Higgins & Whitehead, 1996; Lu & Ades, 2004) 
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Conditionally on the linear predictor, the observation  on the j-th 
individual in the i-th trial for the k-th treatment has expected value  

ijky

 

     kiibkiibijk gyE  1|   

where  .g  is a suitable link function 

 

 Generalized linear mixed model (GLMM) 

 use adaptive Gaussian quadrature (Pinheiro & Bates, 1995) 
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An alternative linear predictor 

ikkiik u    

where  

i  = fixed main effect of the i-th trial,  

k  = main effect of the k-th treatment, and  

iku  = random effect associated with ik   

 

  kiikE    
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Variance-covariance structure for heterogeneity 

 

Let  = vector of random effects for the i-th trial  iu iku

 

Then 

 

  0iuE  and  

  iiu var  
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Relation between baseline contrast model and the two-way model 

 

ikkiik u   

 

         kiibikiiibikibkiibibiik Uuuu    
 

        iibibii u                 ikibkkiib u~ 
 

where 

 iibikik uuu ~   and        ibkkibkiib dE     

 ib  = baseline treatment in i-th trial 
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Transition from two-way model to baseline contrast model: 

 baseline treatment has no variance in i-th trial 

 

Re-parameterized model has random effects: 

 iibu  and   iibikik uuu ~
 

  ibk   

Conditioning on !!  iibu
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Let  

  = vector of random effects for the i-th trial  iu iku

 iu~  = vector of random effects iku~  for the i-th trial 

   iiu var  and (without loss of generality) that   1ib  

 

Then 
 

  T
iiiii DDu  ~~var  

 

where     111  inini ID  is the matrix generating all contrasts relative to 

the baseline treatment in the i-th trial 
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Examples for variance-covariance structure of iu~  
 

Constant variance model: 

 
2
uini I         2

11
~

uinini JI     
 

Diagonal model: 

 22
2

2
1 ,...,,diag ni      2

11
22

3
2
2 ,...,,diag~   nni J  

 

Factor-analytic model (one factor): 
T

i  , where  ,..., 21  T   T
i  ~~~   with  ,...,~

1312  T
 

 

Unstructured model:  

Maximum   2/1ii nn  free parameters for i
~  
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Implement conditional model for i
~

 via unconditional model for i  

 iibikik uuu ~   
 





n

k
ikikik uxu

1

~

 
Example 1: Smoking cessation data 
 

                        Dummy variables 
 Baseline treatment Treatment     1ix 2ix 3ix 4ix
 
  0 0 0 0 A A
  B 1 1 0 0 
  C 1 0 1 0 
  D 1 0 0 1 
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                        Dummy variables 
x Baseline treatment Treatment     1i 2ix 3ix 4ix

 
 B A 1 1 0 0 
  B 0 0 0 0 
  C 0 1 1 0 
  D 0 1 0 1 
 
 C A 1 0 1 0 
  B 0 1 1 0 
  C 0 0 0 0 
  D 0 0 1 1 
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Both models are equivalent in the sense that for any contrast   i
Tc 

  iii u  ~0|var 1 , where  ,..., 21 ii
T
i    and   1ib  

 

Equivalence of conditional and unconditional model 

     iT
i

T
i

T
ii

T cccccuc  var~0|var 1   

Unconditional model: 

Conditional model: 

  ii var   
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Equivalence (continued) 
 

     iT
i

T
i

T
ii

T cccccuc  var~0|var 1   

 

To see this, let  TT ccc 21 , , where  is the first element of c and  is 

the remainder. Then 

1c 2c

     TT
i

TT
iii

T
i cccDDcccc 221222 ,i

T
2

Tc cc1,
~~0     .
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Equivalence (continued) 

 Models fully equivalent with identity link and normal distribution 

 Models not equivalent with other link functions and distributions 

 
 
Example 1: 
 
 Smoking cessation data 

 Changed baseline treatment in some trials 

 Used adaptive Gaussian quadrature (GLIMMIX procedure of SAS) 

    
2
uini I       2

11
~

uinini JI     
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Table 1: Smoking cessation data (Example 1)  
   Standard 
          Estimate  error 
            

Baseline contrasts using original baseline treatments (A) 
 

ABd  0.4192       0.2959 

ACd  0.7407       0.1738  

ADd  0.9484       0.3292 
 
Baseline contrasts taking B as baseline treatment in trials 3-5 
 

ABd  0.4415       0.2982 

ACd  0.7449       0.1751  

ADd  0.9580       0.3315 
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Table 1: Smoking cessation data (Example 1 continued)  
   Standard 
          Estimate  error 
 

Baseline contrasts (2) taking C as baseline treatment in trials 6-15 
 

ABd  0.4407       0.3154 

ACd  0.7773       0.1868  

ADd  0.9821       0.3493 
 
Two-way model estimates  
 

AB    0.3865    0.2387   

AC    0.7166    0.1374   

AD                                      0.9199    0.2720   
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Table 2: Smoking cessation data (Example 1 continued); constant variance 
model for uij 
   Standard 

 C  -1.7068 b 0.0971 

 D  -1.5047 b  0.2273 

  A  -2.4235 a  0.1107 

 B  -2.0366 ab  0.2106 

          Estimate  error 
 

Adjusted means $ 

 
$ Adjusted means (computed on the logit scale) followed by a common letter 
are not significantly different at %5  according to a Wald-test. 
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Table 3: Analysis of smoking cessation data based on two-way model.  
 

  Standard 
Parameter Estimate error AIC 
 

Constant variance: 
 

2
u  0.09068      0.02810 391.20 

 

Diagonal (treatment-specific variance): 
 


2

1u   0.5599       0.2626 365.91 


2

2u   0 -   


2

3u   0 -   


2

4u   0.1292       0.2411   
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Table 4: Analysis of smoking cessation data based on two-way model.  
 

  Standard 
Parameter Estimate error AIC 
 

Constant variance: 
 

2
u  0.09068      0.02810 391.20 

 

Factor-analytic: 
 

1    0.4969       0.1736 364.02 

2  0      -  

3   -0.2423 0.1157  

4   0.05856       0.1985   
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Fitting the FA model with SAS 
 
proc glimmix data=a maxopt=100  
             method=quad(qpoints=6); 
class study trt;  
model m/n = study trt  
                      / ddfm=none solution chisq; 
random trt / sub=study type=fa1(1); 
lsmeans trt / pdiff lines; 
run; 
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Study effects fixed or random? 
 

Study effects fixed 
 
 Inference based on within-study information 
 Inference Protected by randomization 
 Obeys principle of concurrent control 
 Can only assess relative treatment effects 

 
Study effects random 
 
 Recovery of inter-study information 
 Need to assume that studies in NMA are random sample from some urne 
 Can also assess absolute treatment effects 
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Recent discussion on arm-based (AB) versus contrast-based (CB) models 
 
 The discussion focusses much on estimation of relative treatment effects 

(CB) versus absolute treatment effects (AB) 
 I think this becomes a non-issue when a study main effect is included in 

the AB model 
 The main issue is whether or not to recover the inter-study information, 

i.e. whether the study main effect is taken as fixed or random 
 
Dias S, Ades AE 2016 Absolute or relative effects? Arm-based synthesis of 
trial data (Commentary). Research Synthesis Methods 7, 23-28. 
 
Hong, H., Chu, H., Zhang, J., Carlin, B.P. 2016 Rejoinder to the discussion of "a 
Bayesian missing data framework for generalized multiple outcome mixed 
treatment comparisons," by S. Dias and A.E. Ades. Research Synthesis 
Methods 7, 29-33. 
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Notation for treatment summaries 

 = vector of treatment summaries in i-th trial (means, log odds, etc)  is

 sorted such that the baseline for the i-th trial is in the first position 

 Pairwise contrasts of all treatments to baseline are computed by  

,  

where 

iii sDz 

    111  inin IiD  and  in  = number of treatments in i-th trial  

 Stacking trials , we may write  

,  

where 

mi ,...,2,1

Dsz 

 T
m

T zz ,...,, 2
TT z1z ,  T

m
TTT sss ,...,, 21s  and .   i

m

i
DD

1
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Basic model for treatment summaries  
 

es  ,  
 

where  
 

 T
m

TTT  ,...,, 21  is a vector holding linear predictors ik  

e  = estimation errors associated with summary measures s  

 RNe ,0~   

i

m

i
RR

1
 , where  iii sR |var  
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Two-way model for linear predictor vector  

    
uXX    ,  

where  

     = fixed trial main effects with design matrix  X

     = fixed treatment main effects with design matrix   X

    = random between-trial effects with u  ,0~ Nu  and 
 i

m

i


1

Hence,  

    
      XXEsE    and  

      RVs var   
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Sweeping out trial main effects 
 

sPz * ,  

where PIP   and   TT XXXXP 


  

 

This is equivalent to computing contrasts to baseline per trial: Dsz   
 

   DDDDP TT 1
  and hence   zDDDz TT 1* 

  

 

Normal equations for sPz *  yield same solution for   as those for s  

                                                      Proof in De Hoog, Speed & Williams (1990) 
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After sweeping out the trial effect   via , the conditional and the 

unconditional variance-covariance models are identical: 

Dsz 

  VDVDz T

 REML estimates of variance components coincide under both models  

 

Equivalence of REML estimates of variance components 
 

REML  

 operates on contrasts free of fixed effects 

 is invariant to the choice of contrasts (Harville, 1977) 

~var  , where TDRDV  ~~  and .  i

m

i




~
1

~
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Example 1 (continued) 

 Empirical log-odds of treatment versus baseline 

 baseline contrast on logit scale 

 In case a treatment has no successes or failures, a correction factor of a 

half is added to both success and failure counts  

 Compute error variance R of log-odds using GLM package 

 Baseline treatment differs among trials 

 Basic parameters ,  and   AB

 Functional parameters 

d ACd ADd

ABACBC ddd  , ABADBD ddd  , ACADCD ddd   
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Test of global null hypothesis 
 
 0:0  ADACAB dddH   DCBAH  :0  

 2 = 4.62  

 3 numerator d.f.  

 21 denominator d.f.  

  0124.0p

 
Both analyses identical! 
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Table 3: Summary measures analysis for smoking cessation data (REML). We 
assumed  for heterogeneity under the two-way model. This is 

equivalent to fitting 
 

2
uini I 

     2
11

~
uinini JI    for the baseline-contrast model.   

 
               Contrast    Standard 
Baseline           Two-way  Estimate  error 
contrasts §       model § 
 

ABd  AB    0.3978    0.3305 

ACd  AC    0.7013    0.1972  

ADd  AD    0.8642    0.3749 
 
§ Results are identical for both analyses 
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Table 3 (continued)  
 
               Contrast    Standard 
Baseline           Two-way  Estimate  error 
contrasts          model  
 

                                              Adjusted means $ 
- 

  A   -2.3792 a 0.1553 

-  B  -1.9815 ab 0.2886 

-  C  -1.6779 b 0.1352 

-  D  -1.5150 b 0.3100 
 
$ Adjusted means followed by a common letter are not significantly different 
at %5  according to a t-test using the Kenward-Roger (1997) method for 
degrees of freedom and variance adjustments 
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Take home message up to here 
 

Compared:  

 Baseline contrast model (conditional)      kiibikiik U    

 Two-way model (unconditional)              ikkiik u   
 

Full equivalence: 
 Summary data 
 Individual patient data with identity link and normal errors 
 

Very similar results: 
 All other cases 
 But: Baseline contrast model is not invariant to choice of baseline!
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Example 

 Trial network with three treatments (A, B, C)  

 Three types of trial: A vs B, A vs C and B vs C  

 Consider evidence on B vs C 

 Need to combine direct and indirect evidence on treatment comparisons 

Direct comparison:     Trials B vs C 

Indirect comparison:  Trials A vs B and A vs C 

 Inconsistency (incoherence):  

 direct and indirect comparisons for B vs C do not agree 
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Reasons for inconsistency 
 
 A new drug may be tested on a population of patients, for which a standard 

drug did not show a satisfactory effect. The effect relative to a placebo in 
such a selected population may differ from the effect in a population that 
is not selected in this way.  
 

 Inconsistency may also occur in open-label or imperfectly blinded trials 
(Lumley, 2002) 

 
 
Other term 
 
 Incoherence (Lumley, 2002)
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Inconsistency relation  

 Assume that B is baseline treatment in trials B vs C 

 Use functional parameter to model effect of C : 

 ABACBC

 Modification in case of inconsistency : 

ddd 

         (inconsistency relation)  

 use this for treatment C in trials where B is baseline 

ABCABACBC wddd 

 If   is significant, inconsistency is established ABCw
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Loops 
 

Network forms a closed loop between A, B and C in an undirected graph with 

vertices corresponding to treatments and edges representing direct 

comparisons between treatments (Lu and Ades, 2006) 
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ABCw
 

(Dias et al., 2010) 

Undirected graph: Vertices = treatments 
 Edges = direct comparisons



4. Testing inconsistency 

EFSPI, Braine-l'Alleud, 22 November 2016  Hans-Peter Piepho 54 

 

Using inconsistency factors is not easy! 

 Modeling and interpretation of inconsistency become more difficult in the 

presence of multi-arm trials, and fitting the model may require careful 

programming 

 The types of inconsistency that can be tested using inconsistency factors 

are not invariant to the choice of basic parameters 

 “… we have not managed to find a general formula of a mechanical routine to 

count [the number of independent consistency relations]” (Lu & Ades, 2006) 

 “In practice, an inconsistency model must be programmed very carefully, 

and the [number of independent inconsistencies] may have to be counted by 

hand.” (Lu & Ades, 2006) 
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Example: 
 

 Structure {A vs B, A vs C, A vs B vs C}.  

 This could be modeled by parameters  ACAB dd , ,  BCAB dd ,  , or  BCAC dd ,   

 The three parameterizations are essentially equivalent 

 But: If  ACAB dd ,

d 

 is chosen, then the inconsistency relation 

ABCABACBC  cannot be used, because parameter BC  is already 

implicitly defined by the parameterization of three-arm trial A vs B vs C.  

 (Lu & Ades, 2006) 

wdd  d
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Here we keep it simple 
 

 Node-splitting algorithm (Dias et al., 2010) 

 Use inconsistency factors one comparison at a time  

 

                 wAB = 1 for B when A & B in same trial 

                 wAB = 0 otherwise 
 
 

  
(for details on more complex approaches see Lu & Ades, 2006) 
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Table 4: Estimates for inconsistency factors (wAB) when fitted one-at-a-time 
in two-way model trial-by-treatment for Thrombolytics data (Dias et al. 2010) 
 

Treatments   Standard p-value AIC§ ABw
A B  error 
 
1 2 -0.2038       0.2296         0.3749 593.79 
1 3 0.09045       0.1040        0.3843 593.83 
1 5 0.1206       0.1204       0.3164 593.58 
1 7 -0.2678       0.2200     0.2235 593.09 
1 8 -0.1799       0.5591     0.7476 594.48 
1 9 -0.4050       0.2517     0.1076 591.94 
2 7 -0.1291       0.3986     0.7461 594.48 
2 8  -0.1352       0.4464     0.7619 594.49 
2 9 -0.3005       0.3557      0.3983 593.87 
3 4 -0.4568       0.6620          0.4902 594.10 
3 5 -0.1206       0.1204     0.3164 593.58 
3 7 0.2780       0.2091           0.1835 592.80 
3 8 0.2559       0.4529     0.5720 594.26 
3 9 1.1924       0.4094     0.0036 584.52 
 
§ The two-way model without inconsistency factor has AIC = 592.59. 
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Fig. 1 Residual plots for two-way model (5) fitted to Thrombolytics data. 
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Table 5: Observations with absolute studentized residuals > 2 in 
Thrombolytics data based on an additive model with main effects for trial 
and treatment. 
 
Treatment Trial Cases Sample Studentized 
   size residual 
 
3   44    5   210   -2.20288 
3   45    3   138   -2.09658 
9   44   17   211    2.20280 
9   45   13   147    2.09651 
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Extending the notion of inconsistency 

 Comparison of direct and indirect evidence on a contrast  

 Presence of a new treatment in a trial may well modify the direct 

difference between A and B (Lu et al., 2011)  

 need to compare direct comparisons from different types of trial 

 

Idea 

 Test interaction in trial type  treatment classification 
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 Treatment 
Trial type A B C 

1 X X  
2 X  X 
3  X X 

 

Fig. 2: Trial type  treatment classification for network  
            {A vs B, A vs C, B vs C}. 
 

  treatments  3n

  trial types 3m

  cells filled 6c

  11  mnc  d.f. for interaction trial type   treatment 
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 Treatment 
Trial type A B C 

1 X X X 
2 X X  

 

Fig. 3: Trial type  treatment classification for network  
            {A vs B vs C, A v. B}. 
 

  treatments  3n

  trial types 2m

  cells filled 5c

  11  mnc  d.f. for interaction trial type   treatment
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 Treatment 
Trial type A B C 

1 X X  
2 X  X 
3 X X X 

 

Fig. 4: Trial type  treatment classification for network  
            {A vs B, A vs C, A vs B vs C}. 
 

  treatments  3n

  trial types 3m

  cells filled 7c

  21 mnc  d.f. for interaction trial type   treatment  
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 (Piepho, Madden and Williams, 2012, Biometrics)

 Heterogeneity is a property of variation among trials within the same trial 

type, while inconsistency affects variation between trial types 

 

Model to test for inconsistency 
 

  ijkjkkijjijk u    

j  = fixed main effect for the j-th trial type  

  jk  = fixed effect for the interaction jk-th trial type  treatment  

 

 Heterogeneity ijk  can be separated from inconsistency u   jk  provided 

there are several trials per trial type (design) 
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Example 2 (Thrombolytics data):  

 Wald test for the trial type-treatment interaction in the 

  on 10 d.f.; p = 0.2020 40.132 

 Bonferroni-adjustment for test of inconsistency factor : p = 0.0504  39w

 In summary, there is overall good agreement between our analysis and that 

presented in Dias et al. (2010) 
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Example 1 (Smoking cessation data):  

 7148181  mnc  degrees of freedom for inconsistency 

 Adaptive Gaussian quadrature to fit a logit model by ML  

  (p = 0.5627) with heterogeneity ( )  81.52  ik

   (p = 0.0948) without heterogeneity 

u

18.122 

 

For comparison: Model with baseline contrasts (Lu et al., 2011)  

  with heterogeneity 71.42 

  without heterogeneity 22.152 
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Example 3: 
 
 Diabetes study of Senn et al. (2013) 

 26 trials 

 15 different designs (one three-arm trial) 

 10 treatments, mostly involving glucose-lowering agent added to baseline 
sulfonylurea treatment 

 Continuous outcome: blood glucose change 

 



4. Testing inconsistency 

EFSPI, Braine-l'Alleud, 22 November 2016  Hans-Peter Piepho 68 

 

Factor symbol Factor description 
G Group of trials, trial type, design 
S Study, trial 
T Treatment 
 
 
 

Two-way ANOVA 
 

S  T = S + T + S.T 

 

Model for inconsistency 
 

(G/S)  T = G + G.S + T + G.T + G.S.T 

                            inconsistency      heterogeneity 
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                                   detach design 1      inconsistency      heterogeneity 

Factor symbol Factor description 
D1 D1 = 1 for design 1, D1 = 0 otherwise 
G Group of trials, trial type, design 
S Study, trial 
T Treatment 

 

Locating inconsistency by detachment of individual designs 

 

 
 
 

(D1/G/S)  T = D1 + D1.G + D1.G.S + T + D1.T + D1.G.T + D1.G.S.T 
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Effect G.S.T fixed 
Dk.T Dk.G.T 

Design Design
no. (k)

No. 
of 
trials

D.f. 
for 
Dk.T Wald 

statistic
p-value Wald 

statistic
p-value 

acar:plac 1 1 1 0.09 0.7699 22.45 0.0010 
acar:SUal 2 1 1 0.01 0.9091 22.52 0.0010 
metf:plac 4 3 1 0.46 0.4976 22.07 0.0012 
metf:acar:plac 5 1 2 0.15 0.9297 22.39 0.0004 
metf:SUal 6 1 1 15.02 0.0001 7.52 0.2758 
piog:plac 8 1 1 5.28 0.0215 17.25 0.0084 
piog:metf 9 1 1 5.40 0.0201 17.13 0.0088 
piog:rosi 10 1 1 0.05 0.8280 22.49 0.0010 
rosi:plac 11 6 1 6.24 0.0125 16.30 0.0122 
rosi:metf 12 2 1 0.01 0.9199 22.52 0.0010 
rosi:SUal 13 1 1 15.76 <0.0001 6.77 0.3424 
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Effect G.S.T random 
Dk.T Dk.G.T 

Design Design
no. (k)

No. 
of 
trials

D.f. 
for 
Dk.T Wald 

statistic
p-value Wald 

statistic
p-value 

acar:plac 1 1 1 0.02 0.8889 2.25 0.8782 
acar:SUal 2 1 1 0.01 0.9430 2.26 0.8765 
metf:plac 4 3 1 0.04 0.8379 2.22 0.8814 
metf:acar:plac 5 1 2 0.07 0.9634 2.18 0.8129 
metf:SUal 6 1 1 1.63 0.2343 0.92 0.9835 
piog:plac 8 1 1 0.43 0.5299 1.96 0.9062 
piog:metf 9 1 1 0.43 0.5318 1.94 0.9081 
piog:rosi 10 1 1 0.01 0.9065 2.27 0.8751 
rosi:plac 11 6 1 0.74 0.4112 1.87 0.9168 
rosi:metf 12 2 1 0.01 0.9276 2.25 0.8795 
rosi:SUal 13 1 1 1.79 0.2146 0.66 0.9930 
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Case-deletion plots and residual diagnostics 
 

(1) Fit model (G/S)  T and compute G.T means 

 

(2) Fit model G + T to G.T means 
 

 Drop a G.T mean and compute T means based on model G + T 

 Compute studentized residuals for G.T means from model G + T 
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Fig. 1: Case-deletion plot of treatment means. Case-deletion means based on a fit of the model G + T using design  treatment mean 
estimates obtained from fitting model (2) taking heterogeneity G.S.T as random. To obtain diagnostics for treatment means (factor T), we 
prevented an intercept from being fitted and imposed a sum-to-zero restriction on the design effects G. 
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G.S.T random Design Observation Treatment 

PRESS residual Studentized res. 
 1  1 Acar  0.0785  0.1453 
   2 plac -0.0785 -0.1453 
 2  3 acar  0.0619  0.1056 
   4 SUal -0.0619 -0.1056 
 3  5 benf   .   . 
   6 plac   .   . 
 4  7 metf -0.0781 -0.2282 
   8 plac  0.0781  0.2282 
 5  9 acar -0.1507 -0.2601 
  10 metf  0.0036  0.0075 
  11 plac  0.1193  0.2273 
 6 12 metf  0.6095  1.1614 
  13 SUal -0.6095 -1.1614 
 7 14 migl   .   . 
  15 plac   .   . 
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G.S.T random Design Observation Treatment 

PRESS residual Studentized res. 
 8 16 piog -0.2802 -0.5585 
  17 plac  0.2802  0.5585 
 9 18 metf -0.2927 -0.5779 
  19 piog  0.2927  0.5779 
10 20 piog -0.0073 -0.0141 
 21 rosi  0.0073  0.0141 
11 22 plac -0.2100 -0.6391 
 23 rosi  0.2100  0.6391 
12 24 metf -0.0616 -0.1610 
 25 rosi  0.0616  0.1610 
13 26 rosi -0.6733 -1.2693 
 27 SUal  0.6733  1.2693 
14 28 plac   .   . 
 29 sita   .   . 
15 30 plac   .   . 
 31 vild   .   . 
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Example 4:  

 Sclerotherapy data in Sharp and Thompson (2000) 

 19 trials  

 2 treatments (control and treatment) 

 Number of deaths and bleeds 
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Fig: Difference of control 
and treatment vs. mean on 
log odds scale. 
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Regress expected treatment difference baseline treatment 
 

  110211012 1 iiiii    

 

1i  = expected value of the baseline treatment in the i-th trial  

2i  = expected value of the new treatment 

                                         Schmid et al. (1998), Sharp & Thompson (2000) 

 

Ignoring heterogeneity among the trials, this type of model is commensurate 

with a multiplicative model of the form ... 
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A commensurate model (joint regression model) 
 

ikkik     , 
  

where   k  = intercept for k-th treatment 

      k  = slope for k-th treatment 

 i  = effect (latent variable) for i-th trial (fixed!)  

 Finlay-Wilkinson (1963) regression in plant breeding!  

 

Identifiability constraints  and    (Ng & Grunwald, 1997). n
n

k
k 

1
 0

1




m

i
i
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 With just two treatments, rearranging and comparing coefficients yields: 
 

   12120     

   1121    

 

 With Finlay-Wilkinson model easy to extend to more than 2 treatments! 

 

 Add random effect for heterogeneity: 
 

   ikikkik u 
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Interpretation of treatment effects more difficult 
 

  iii  212121 
 

 
 contrast depends on study
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Factor-analytic model ( i  random!) 
 

We may define the composite random term 

ikikik uf     

and set the linear predictor equal to  

ikkik f   

For identifiability, we require   1var2  i , while 1  and 2  are 

unconstrained. Thus, we have for two treatments 
 

2
2

2

1var u
T

i

i I
f
f

 







,  

where  21, T .          (Piepho, 1997, Biometrics)  
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Table: Fit of joint regression model (sclerotherapy data). 
 

                                    Fixed-effects model              Random-effects model  
 

                      Standard  Standard 
Parameter   Estimate      Error Estimate Error 
 

1  (control)     -0.927     0.261 -0.755       0.227 

2  (new treatment) -1.247    0.089 -1.305       0.145 

1        2.140     0.257 0.779       0.238 

2  -0.140     0.257 -0.106       0.186 
2
u           0.013    0.036 0.201       0.128 

0           -1.308      0.131 -1.408      0.235 

1          -1.065      0.112 -1.137      0.242 

12    -0.320     0.281 -0.550       0.286 
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Comparison with compound symmetry (CS) model (random model) 
 

121     

 
 CS model   =   two-way model with random study effects 
 
Model AIC 
 

Factor-analytic 243.15 
Compound symmetry 244.61 
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Example 5: Diabetes data 
 
 Incidence of diabetes with various antihypertensive drugs  
 Binomial response (cases/total counts) 
 6 treatments: 

ACE Inhibitor, ARB, CCB, Diuretic, Placebo, Beta-blocker 
 22 studies 
 Treatment x trial classification very incomplete 
 

 (Elliot and Meyer, 2007, Lancet)
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Factor-analytic model 
 

ikkik f     with    ikikik uf    
 

  2
6var u

T
k If  

   
with

 

 621 ,...,,  T

  and  621 ,...,, iii
T

i ffff 
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Table: Parameter estimates for joint regression model (diabetes data). 
 

                                     Fixed-effects model              Random-effects model  
 

                      Standard  Standard 
Parameter   Estimate      Error Estimate Error 
 

1  (ACE inhibitor)     -2.852   0.046 -2.864  0.156 

2  (ARB)     -2.907  0.061 -2.929  0.128 

3  (CCB)    -2.793   0.034 -2.759  0.125 

4  (Diuretic)     -2.492   0.069 -2.523  0.135  

5  (Placebo)     -2.710   0.052  -2.743  0.162  

6  (Beta-blocker)      -2.603 0.038  -2.572   0.136 



5. Introducing multiplicative terms 

EFSPI, Braine-l'Alleud, 22 November 2016  Hans-Peter Piepho 90 

 

Table: Parameter estimates for joint regression model (diabetes data). 
 

                                     Fixed-effects model              Random-effects model  
 

                      Standard  Standard 
Parameter   Estimate      Error Estimate Error 
 

1  (ACE inhibitor)       1.193 0.088   0.694       0.128 

2 (ARB)      0.738  0.083   0.533     0.132 

3  (CCB)          0.820  0.062  0.555      0.105 

4 (Diuretic)      1.039  0.116    0.586       0.124 

5  (Placebo)           1.198 0.084  0.723       0.130 

6  (Beta-blocker)  1.013     0.071 0.602       0.108
   

2 u           0 - 0.0036     0.0042 
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Fig. 2: Plot of fitted 
linear predictor  ik  
versus estimated fixed 
trial effect  i  for the 
analysis of the diabetes 
example. 
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Modelling inconsistency  
 

  ijkjkkijjijk u 
  

j  = fixed main effect for the j-th trial type  

  jk  = fixed effect for the interaction jk-th trial type  treatment  

    (significant inconsistency at P = 0.0021) 

 
Modelling inconsistency by multiplicative terms 
 
     jkjk  1

 
 

ijkkijjkijk u 
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Comparing models (1) and (2) 
 
 

 0711.0,8..41.142  Pfd  
 

  8.4171 AIC  
 

  2.4182 AIC  
 
 Mild evidence that inconsistency well represented by multiplicative terms
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Inter-trial information: some remarks 
 All models have fixed trial effect (some implicitly so) 
 between-trial information on treatment effects is not recovered 
 principle of concurrent control (Senn, 2000): 
 effect of treatments should only be judged by within-trial comparisons 
because only these are protected by randomization, provided that individual 
trials are randomized, and only these are based on the same groups of units 
(e.g., patients, plots, etc.).  
 By contrast, with a meta-analysis, there is usually no randomization 
between trials and groups of units for different trials may differ by 
important confounding factors.  

 Approaches that exploit between-trial information (van Houwelingen et al., 
2002; Dias and Ades, 2016) have been criticized by some authors. 
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 In practice, between-trial information is often low, so differences in 
analyses with fixed or random trial main effects are small, especially when 
the same set of treatments is tested in all trials.  

 In complex multiple-treatment networks, however, between-trial 
information may be non-negligible. 
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Compared:  

 Baseline contrast model (conditional)      kiibikiik U    

 Two-way model (unconditional)              ikkiik u   
 

Full equivalence: 
 Summary data 
 Individual patient data with identity link and normal errors 
 

Very similar results: 
 All other cases 
 But: Baseline contrast model is not invariant to choice of baseline! 
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 Two-way model invariant to choice of baseline 
 

 Two-way model much easier to fit using standard software 
 

 Easy to fit two-way variance-covariance models for heterogeneity 
 

 Joint regression model and factor-analytic models extend regression on 

baseline treatment when there are more than two treatments  

 easy to implement with two-way model 

 

Lesson for multi-environment variety trials: 
 

 Consider inconsistency of trials 
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                    Thanks! 
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