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Meta-analysis 
 
 Combine results from several trials / studies 

 Mostly clinical trials 

 Individual patient data (IPD) or treatment summaries 

 Two modelling approaches: 

(1) Model for contrasts with baseline treatment per trial 

(2) Two-way ANOVA model for trial  treatment classification 

 Option (1) most common; but we think option (2) is much simpler 

 

 compare both modelling options 

 investigate when they are equivalent 
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Example 1: 
Lu & Ades (2006) JASA 

 



1. Introduction 

EFSPI, Braine-l'Alleud, 22 November 2016  Hans-Peter Piepho 5 

 

Network meta-analysis 
 

 More than two treatments tested in combined trials  

 Need to combine direct and indirect evidence on treatment comparisons 
 

Example 1: 

 Direct comparison:     Trials A vs B 

 Indirect comparison:  Trials A vs C and B vs C 
 

 Other names:  

Mixed-treatment comparisons (MTC) 

Mixed-treatment meta-analysis (MTM)



1. Introduction 

EFSPI, Braine-l'Alleud, 22 November 2016  Hans-Peter Piepho 6 

Direct comparison (A vs B) 
Indirect comparison (via C) 

Example 1: 
Lu and Ades (2006)  
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(Dias et al., 2010) 

 

   

Undirected graph: Vertices = treatments 
 Edges = direct comparisons
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Example 2: Trombolytics data (Dias et al., 2010), nine treatments, 50 trials, 
response = mortalities (binomial)
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                                 B 

A                                                ?      Indirect comparison 

(Placebo) 

                                             C 

 

Comparison Mean difference   
 (contrast) 
B vs A -0.34 
C vs A -0.19 
 
 

15.019.034.0  CABABC MDMDMD  
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Combining direct and indirect evidence 
 
 Inverse variance method 
 Each estimate of mean difference (MD) is ‘weighted’ by the inverse of its 

variance 
 This leads to a ‘mixed’ result: 
 

indirectdirect

indirect
indirect

direct
direct

MDMD
MD
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
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 (Georgia Salanti, Workshop Zurich 2011)
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Parallels with multi-environment trials (MET) 
 

 Incomplete genotype  environment trials  

(treatments = genotypes, environments = trials, studies) 

 Interested in genotype means across environments 

 Heterogeneity between environments  genotype-environment interaction 

 Modelling variance-covariance structure for heterogeneity  
 variance-covariance structures for genotype-environment interaction 
 variances and covariances not constant between genotypes 
 stability analysis, analysis of phenotypic stability 

 
 Also similar to incomplete block designs 
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Two modelling approaches 
 
(1) Contrast-based models 
 
 relative treatment effects compared to baseline (log relative risk, log 

odds ratio, mean difference)  
 Models for contrasts 

 
 
(2) Arm-based models  
 
 absolute treatment effects (log risk, log odds, treatment means) 
 Analysis-of-variance (ANOVA) models for factors study and treatment 
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Linear predictors for two treatments A and B 
 
A = baseline treatment 

B = new medication 

 
A:     

B: ABd    

 
  = baseline effect for the trial 

ABd  = effect of treatment B compared to baseline A
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Linear predictors for three treatments A, B and C 
 
(1) When A is baseline (A vs B and A vs C trials) 
 
A:     

B: ABd    

C: ACd    

 
(2) When B is baseline (B vs C trials) 
 
B:     

C: BCd    
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Basic parameters and functional parameters  

 

Basic parameters:  ,   ABd ACd
 

Functional parameters:    ABACBC ddd   
 

 

(2) When B is baseline (B vs C trials) 
 
B:     

C: ABAC dd     
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 kiib   = random effect of treatment k versus baseline  ib  in the i-th trial  

 
 








ibk
ibk

Uik ,0
,1

                                                           (Lu & Ades, 2006)

 

The linear predictor for the k-th treatment in the i-th trial is given by 

 = expected value of the baseline treatment  ib  in the i-th trial 

 kiibikiik U       

i   = baseline parameter in the i-th trial  

where  
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Random effects for baseline contrasts: 

    kibkiib dE    

 kibd  = treatment effects to be estimated across trials 

 

Fixed effects-part of the model:  

   kibikiik dUE   .  
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Heterogeneity between trials  

 Variance-covariance structure for  kiib  
in i-th trial, e.g. 

 

        2/var 2
11    ininkiib JI  

 
where  
 

nI   = n-dimensional identity matrix 

nJ   = n  n matrix of ones 
2   = a variance component for between-trial heterogeneity  

 in   = number of treatments in the i-th trial  
                                     (Higgins & Whitehead, 1996; Lu & Ades, 2004) 
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Conditionally on the linear predictor, the observation  on the j-th 
individual in the i-th trial for the k-th treatment has expected value  

ijky

 

     kiibkiibijk gyE  1|   

where  .g  is a suitable link function 

 

 Generalized linear mixed model (GLMM) 

 use adaptive Gaussian quadrature (Pinheiro & Bates, 1995) 
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An alternative linear predictor 

ikkiik u    

where  

i  = fixed main effect of the i-th trial,  

k  = main effect of the k-th treatment, and  

iku  = random effect associated with ik   

 

  kiikE    
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Variance-covariance structure for heterogeneity 

 

Let  = vector of random effects for the i-th trial  iu iku

 

Then 

 

  0iuE  and  

  iiu var  
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Relation between baseline contrast model and the two-way model 

 

ikkiik u   

 

         kiibikiiibikibkiibibiik Uuuu    
 

        iibibii u                 ikibkkiib u~ 
 

where 

 iibikik uuu ~   and        ibkkibkiib dE     

 ib  = baseline treatment in i-th trial 
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Transition from two-way model to baseline contrast model: 

 baseline treatment has no variance in i-th trial 

 

Re-parameterized model has random effects: 

 iibu  and   iibikik uuu ~
 

  ibk   

Conditioning on !!  iibu
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Let  

  = vector of random effects for the i-th trial  iu iku

 iu~  = vector of random effects iku~  for the i-th trial 

   iiu var  and (without loss of generality) that   1ib  

 

Then 
 

  T
iiiii DDu  ~~var  

 

where     111  inini ID  is the matrix generating all contrasts relative to 

the baseline treatment in the i-th trial 
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Examples for variance-covariance structure of iu~  
 

Constant variance model: 

 
2
uini I         2

11
~

uinini JI     
 

Diagonal model: 

 22
2

2
1 ,...,,diag ni      2

11
22

3
2
2 ,...,,diag~   nni J  

 

Factor-analytic model (one factor): 
T

i  , where  ,..., 21  T   T
i  ~~~   with  ,...,~

1312  T
 

 

Unstructured model:  

Maximum   2/1ii nn  free parameters for i
~  
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Implement conditional model for i
~

 via unconditional model for i  

 iibikik uuu ~   
 





n

k
ikikik uxu

1

~

 
Example 1: Smoking cessation data 
 

                        Dummy variables 
 Baseline treatment Treatment     1ix 2ix 3ix 4ix
 
  0 0 0 0 A A
  B 1 1 0 0 
  C 1 0 1 0 
  D 1 0 0 1 
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                        Dummy variables 
x Baseline treatment Treatment     1i 2ix 3ix 4ix

 
 B A 1 1 0 0 
  B 0 0 0 0 
  C 0 1 1 0 
  D 0 1 0 1 
 
 C A 1 0 1 0 
  B 0 1 1 0 
  C 0 0 0 0 
  D 0 0 1 1 
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Both models are equivalent in the sense that for any contrast   i
Tc 

  iii u  ~0|var 1 , where  ,..., 21 ii
T
i    and   1ib  

 

Equivalence of conditional and unconditional model 

     iT
i

T
i

T
ii

T cccccuc  var~0|var 1   

Unconditional model: 

Conditional model: 

  ii var   
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Equivalence (continued) 
 

     iT
i

T
i

T
ii

T cccccuc  var~0|var 1   

 

To see this, let  TT ccc 21 , , where  is the first element of c and  is 

the remainder. Then 

1c 2c

     TT
i

TT
iii

T
i cccDDcccc 221222 ,i

T
2

Tc cc1,
~~0     .
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Equivalence (continued) 

 Models fully equivalent with identity link and normal distribution 

 Models not equivalent with other link functions and distributions 

 
 
Example 1: 
 
 Smoking cessation data 

 Changed baseline treatment in some trials 

 Used adaptive Gaussian quadrature (GLIMMIX procedure of SAS) 

    
2
uini I       2

11
~

uinini JI     
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Table 1: Smoking cessation data (Example 1)  
   Standard 
          Estimate  error 
            

Baseline contrasts using original baseline treatments (A) 
 

ABd  0.4192       0.2959 

ACd  0.7407       0.1738  

ADd  0.9484       0.3292 
 
Baseline contrasts taking B as baseline treatment in trials 3-5 
 

ABd  0.4415       0.2982 

ACd  0.7449       0.1751  

ADd  0.9580       0.3315 
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Table 1: Smoking cessation data (Example 1 continued)  
   Standard 
          Estimate  error 
 

Baseline contrasts (2) taking C as baseline treatment in trials 6-15 
 

ABd  0.4407       0.3154 

ACd  0.7773       0.1868  

ADd  0.9821       0.3493 
 
Two-way model estimates  
 

AB    0.3865    0.2387   

AC    0.7166    0.1374   

AD                                      0.9199    0.2720   
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Table 2: Smoking cessation data (Example 1 continued); constant variance 
model for uij 
   Standard 

 C  -1.7068 b 0.0971 

 D  -1.5047 b  0.2273 

  A  -2.4235 a  0.1107 

 B  -2.0366 ab  0.2106 

          Estimate  error 
 

Adjusted means $ 

 
$ Adjusted means (computed on the logit scale) followed by a common letter 
are not significantly different at %5  according to a Wald-test. 
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Table 3: Analysis of smoking cessation data based on two-way model.  
 

  Standard 
Parameter Estimate error AIC 
 

Constant variance: 
 

2
u  0.09068      0.02810 391.20 

 

Diagonal (treatment-specific variance): 
 


2

1u   0.5599       0.2626 365.91 


2

2u   0 -   


2

3u   0 -   


2

4u   0.1292       0.2411   
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Table 4: Analysis of smoking cessation data based on two-way model.  
 

  Standard 
Parameter Estimate error AIC 
 

Constant variance: 
 

2
u  0.09068      0.02810 391.20 

 

Factor-analytic: 
 

1    0.4969       0.1736 364.02 

2  0      -  

3   -0.2423 0.1157  

4   0.05856       0.1985   
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Fitting the FA model with SAS 
 
proc glimmix data=a maxopt=100  
             method=quad(qpoints=6); 
class study trt;  
model m/n = study trt  
                      / ddfm=none solution chisq; 
random trt / sub=study type=fa1(1); 
lsmeans trt / pdiff lines; 
run; 
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Study effects fixed or random? 
 

Study effects fixed 
 
 Inference based on within-study information 
 Inference Protected by randomization 
 Obeys principle of concurrent control 
 Can only assess relative treatment effects 

 
Study effects random 
 
 Recovery of inter-study information 
 Need to assume that studies in NMA are random sample from some urne 
 Can also assess absolute treatment effects 
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Recent discussion on arm-based (AB) versus contrast-based (CB) models 
 
 The discussion focusses much on estimation of relative treatment effects 

(CB) versus absolute treatment effects (AB) 
 I think this becomes a non-issue when a study main effect is included in 

the AB model 
 The main issue is whether or not to recover the inter-study information, 

i.e. whether the study main effect is taken as fixed or random 
 
Dias S, Ades AE 2016 Absolute or relative effects? Arm-based synthesis of 
trial data (Commentary). Research Synthesis Methods 7, 23-28. 
 
Hong, H., Chu, H., Zhang, J., Carlin, B.P. 2016 Rejoinder to the discussion of "a 
Bayesian missing data framework for generalized multiple outcome mixed 
treatment comparisons," by S. Dias and A.E. Ades. Research Synthesis 
Methods 7, 29-33. 
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Notation for treatment summaries 

 = vector of treatment summaries in i-th trial (means, log odds, etc)  is

 sorted such that the baseline for the i-th trial is in the first position 

 Pairwise contrasts of all treatments to baseline are computed by  

,  

where 

iii sDz 

    111  inin IiD  and  in  = number of treatments in i-th trial  

 Stacking trials , we may write  

,  

where 

mi ,...,2,1

Dsz 

 T
m

T zz ,...,, 2
TT z1z ,  T

m
TTT sss ,...,, 21s  and .   i

m

i
DD

1

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Basic model for treatment summaries  
 

es  ,  
 

where  
 

 T
m

TTT  ,...,, 21  is a vector holding linear predictors ik  

e  = estimation errors associated with summary measures s  

 RNe ,0~   

i

m

i
RR

1
 , where  iii sR |var  
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Two-way model for linear predictor vector  

    
uXX    ,  

where  

     = fixed trial main effects with design matrix  X

     = fixed treatment main effects with design matrix   X

    = random between-trial effects with u  ,0~ Nu  and 
 i

m

i


1

Hence,  

    
      XXEsE    and  

      RVs var   
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Sweeping out trial main effects 
 

sPz * ,  

where PIP   and   TT XXXXP 


  

 

This is equivalent to computing contrasts to baseline per trial: Dsz   
 

   DDDDP TT 1
  and hence   zDDDz TT 1* 

  

 

Normal equations for sPz *  yield same solution for   as those for s  

                                                      Proof in De Hoog, Speed & Williams (1990) 
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After sweeping out the trial effect   via , the conditional and the 

unconditional variance-covariance models are identical: 

Dsz 

  VDVDz T

 REML estimates of variance components coincide under both models  

 

Equivalence of REML estimates of variance components 
 

REML  

 operates on contrasts free of fixed effects 

 is invariant to the choice of contrasts (Harville, 1977) 

~var  , where TDRDV  ~~  and .  i

m

i




~
1

~
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Example 1 (continued) 

 Empirical log-odds of treatment versus baseline 

 baseline contrast on logit scale 

 In case a treatment has no successes or failures, a correction factor of a 

half is added to both success and failure counts  

 Compute error variance R of log-odds using GLM package 

 Baseline treatment differs among trials 

 Basic parameters ,  and   AB

 Functional parameters 

d ACd ADd

ABACBC ddd  , ABADBD ddd  , ACADCD ddd   
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Test of global null hypothesis 
 
 0:0  ADACAB dddH   DCBAH  :0  

 2 = 4.62  

 3 numerator d.f.  

 21 denominator d.f.  

  0124.0p

 
Both analyses identical! 
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Table 3: Summary measures analysis for smoking cessation data (REML). We 
assumed  for heterogeneity under the two-way model. This is 

equivalent to fitting 
 

2
uini I 

     2
11

~
uinini JI    for the baseline-contrast model.   

 
               Contrast    Standard 
Baseline           Two-way  Estimate  error 
contrasts §       model § 
 

ABd  AB    0.3978    0.3305 

ACd  AC    0.7013    0.1972  

ADd  AD    0.8642    0.3749 
 
§ Results are identical for both analyses 
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Table 3 (continued)  
 
               Contrast    Standard 
Baseline           Two-way  Estimate  error 
contrasts          model  
 

                                              Adjusted means $ 
- 

  A   -2.3792 a 0.1553 

-  B  -1.9815 ab 0.2886 

-  C  -1.6779 b 0.1352 

-  D  -1.5150 b 0.3100 
 
$ Adjusted means followed by a common letter are not significantly different 
at %5  according to a t-test using the Kenward-Roger (1997) method for 
degrees of freedom and variance adjustments 
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Take home message up to here 
 

Compared:  

 Baseline contrast model (conditional)      kiibikiik U    

 Two-way model (unconditional)              ikkiik u   
 

Full equivalence: 
 Summary data 
 Individual patient data with identity link and normal errors 
 

Very similar results: 
 All other cases 
 But: Baseline contrast model is not invariant to choice of baseline!
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Example 

 Trial network with three treatments (A, B, C)  

 Three types of trial: A vs B, A vs C and B vs C  

 Consider evidence on B vs C 

 Need to combine direct and indirect evidence on treatment comparisons 

Direct comparison:     Trials B vs C 

Indirect comparison:  Trials A vs B and A vs C 

 Inconsistency (incoherence):  

 direct and indirect comparisons for B vs C do not agree 
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Reasons for inconsistency 
 
 A new drug may be tested on a population of patients, for which a standard 

drug did not show a satisfactory effect. The effect relative to a placebo in 
such a selected population may differ from the effect in a population that 
is not selected in this way.  
 

 Inconsistency may also occur in open-label or imperfectly blinded trials 
(Lumley, 2002) 

 
 
Other term 
 
 Incoherence (Lumley, 2002)
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Inconsistency relation  

 Assume that B is baseline treatment in trials B vs C 

 Use functional parameter to model effect of C : 

 ABACBC

 Modification in case of inconsistency : 

ddd 

         (inconsistency relation)  

 use this for treatment C in trials where B is baseline 

ABCABACBC wddd 

 If   is significant, inconsistency is established ABCw
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Loops 
 

Network forms a closed loop between A, B and C in an undirected graph with 

vertices corresponding to treatments and edges representing direct 

comparisons between treatments (Lu and Ades, 2006) 
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ABCw
 

(Dias et al., 2010) 

Undirected graph: Vertices = treatments 
 Edges = direct comparisons
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Using inconsistency factors is not easy! 

 Modeling and interpretation of inconsistency become more difficult in the 

presence of multi-arm trials, and fitting the model may require careful 

programming 

 The types of inconsistency that can be tested using inconsistency factors 

are not invariant to the choice of basic parameters 

 “… we have not managed to find a general formula of a mechanical routine to 

count [the number of independent consistency relations]” (Lu & Ades, 2006) 

 “In practice, an inconsistency model must be programmed very carefully, 

and the [number of independent inconsistencies] may have to be counted by 

hand.” (Lu & Ades, 2006) 



4. Testing inconsistency 

EFSPI, Braine-l'Alleud, 22 November 2016  Hans-Peter Piepho 55 

 

Example: 
 

 Structure {A vs B, A vs C, A vs B vs C}.  

 This could be modeled by parameters  ACAB dd , ,  BCAB dd ,  , or  BCAC dd ,   

 The three parameterizations are essentially equivalent 

 But: If  ACAB dd ,

d 

 is chosen, then the inconsistency relation 

ABCABACBC  cannot be used, because parameter BC  is already 

implicitly defined by the parameterization of three-arm trial A vs B vs C.  

 (Lu & Ades, 2006) 

wdd  d
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Here we keep it simple 
 

 Node-splitting algorithm (Dias et al., 2010) 

 Use inconsistency factors one comparison at a time  

 

                 wAB = 1 for B when A & B in same trial 

                 wAB = 0 otherwise 
 
 

  
(for details on more complex approaches see Lu & Ades, 2006) 
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Table 4: Estimates for inconsistency factors (wAB) when fitted one-at-a-time 
in two-way model trial-by-treatment for Thrombolytics data (Dias et al. 2010) 
 

Treatments   Standard p-value AIC§ ABw
A B  error 
 
1 2 -0.2038       0.2296         0.3749 593.79 
1 3 0.09045       0.1040        0.3843 593.83 
1 5 0.1206       0.1204       0.3164 593.58 
1 7 -0.2678       0.2200     0.2235 593.09 
1 8 -0.1799       0.5591     0.7476 594.48 
1 9 -0.4050       0.2517     0.1076 591.94 
2 7 -0.1291       0.3986     0.7461 594.48 
2 8  -0.1352       0.4464     0.7619 594.49 
2 9 -0.3005       0.3557      0.3983 593.87 
3 4 -0.4568       0.6620          0.4902 594.10 
3 5 -0.1206       0.1204     0.3164 593.58 
3 7 0.2780       0.2091           0.1835 592.80 
3 8 0.2559       0.4529     0.5720 594.26 
3 9 1.1924       0.4094     0.0036 584.52 
 
§ The two-way model without inconsistency factor has AIC = 592.59. 
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Fig. 1 Residual plots for two-way model (5) fitted to Thrombolytics data. 
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Table 5: Observations with absolute studentized residuals > 2 in 
Thrombolytics data based on an additive model with main effects for trial 
and treatment. 
 
Treatment Trial Cases Sample Studentized 
   size residual 
 
3   44    5   210   -2.20288 
3   45    3   138   -2.09658 
9   44   17   211    2.20280 
9   45   13   147    2.09651 
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Extending the notion of inconsistency 

 Comparison of direct and indirect evidence on a contrast  

 Presence of a new treatment in a trial may well modify the direct 

difference between A and B (Lu et al., 2011)  

 need to compare direct comparisons from different types of trial 

 

Idea 

 Test interaction in trial type  treatment classification 
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 Treatment 
Trial type A B C 

1 X X  
2 X  X 
3  X X 

 

Fig. 2: Trial type  treatment classification for network  
            {A vs B, A vs C, B vs C}. 
 

  treatments  3n

  trial types 3m

  cells filled 6c

  11  mnc  d.f. for interaction trial type   treatment 
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 Treatment 
Trial type A B C 

1 X X X 
2 X X  

 

Fig. 3: Trial type  treatment classification for network  
            {A vs B vs C, A v. B}. 
 

  treatments  3n

  trial types 2m

  cells filled 5c

  11  mnc  d.f. for interaction trial type   treatment
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 Treatment 
Trial type A B C 

1 X X  
2 X  X 
3 X X X 

 

Fig. 4: Trial type  treatment classification for network  
            {A vs B, A vs C, A vs B vs C}. 
 

  treatments  3n

  trial types 3m

  cells filled 7c

  21 mnc  d.f. for interaction trial type   treatment  
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 (Piepho, Madden and Williams, 2012, Biometrics)

 Heterogeneity is a property of variation among trials within the same trial 

type, while inconsistency affects variation between trial types 

 

Model to test for inconsistency 
 

  ijkjkkijjijk u    

j  = fixed main effect for the j-th trial type  

  jk  = fixed effect for the interaction jk-th trial type  treatment  

 

 Heterogeneity ijk  can be separated from inconsistency u   jk  provided 

there are several trials per trial type (design) 
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Example 2 (Thrombolytics data):  

 Wald test for the trial type-treatment interaction in the 

  on 10 d.f.; p = 0.2020 40.132 

 Bonferroni-adjustment for test of inconsistency factor : p = 0.0504  39w

 In summary, there is overall good agreement between our analysis and that 

presented in Dias et al. (2010) 
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Example 1 (Smoking cessation data):  

 7148181  mnc  degrees of freedom for inconsistency 

 Adaptive Gaussian quadrature to fit a logit model by ML  

  (p = 0.5627) with heterogeneity ( )  81.52  ik

   (p = 0.0948) without heterogeneity 

u

18.122 

 

For comparison: Model with baseline contrasts (Lu et al., 2011)  

  with heterogeneity 71.42 

  without heterogeneity 22.152 
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Example 3: 
 
 Diabetes study of Senn et al. (2013) 

 26 trials 

 15 different designs (one three-arm trial) 

 10 treatments, mostly involving glucose-lowering agent added to baseline 
sulfonylurea treatment 

 Continuous outcome: blood glucose change 

 



4. Testing inconsistency 

EFSPI, Braine-l'Alleud, 22 November 2016  Hans-Peter Piepho 68 

 

Factor symbol Factor description 
G Group of trials, trial type, design 
S Study, trial 
T Treatment 
 
 
 

Two-way ANOVA 
 

S  T = S + T + S.T 

 

Model for inconsistency 
 

(G/S)  T = G + G.S + T + G.T + G.S.T 

                            inconsistency      heterogeneity 
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                                   detach design 1      inconsistency      heterogeneity 

Factor symbol Factor description 
D1 D1 = 1 for design 1, D1 = 0 otherwise 
G Group of trials, trial type, design 
S Study, trial 
T Treatment 

 

Locating inconsistency by detachment of individual designs 

 

 
 
 

(D1/G/S)  T = D1 + D1.G + D1.G.S + T + D1.T + D1.G.T + D1.G.S.T 
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Effect G.S.T fixed 
Dk.T Dk.G.T 

Design Design
no. (k)

No. 
of 
trials

D.f. 
for 
Dk.T Wald 

statistic
p-value Wald 

statistic
p-value 

acar:plac 1 1 1 0.09 0.7699 22.45 0.0010 
acar:SUal 2 1 1 0.01 0.9091 22.52 0.0010 
metf:plac 4 3 1 0.46 0.4976 22.07 0.0012 
metf:acar:plac 5 1 2 0.15 0.9297 22.39 0.0004 
metf:SUal 6 1 1 15.02 0.0001 7.52 0.2758 
piog:plac 8 1 1 5.28 0.0215 17.25 0.0084 
piog:metf 9 1 1 5.40 0.0201 17.13 0.0088 
piog:rosi 10 1 1 0.05 0.8280 22.49 0.0010 
rosi:plac 11 6 1 6.24 0.0125 16.30 0.0122 
rosi:metf 12 2 1 0.01 0.9199 22.52 0.0010 
rosi:SUal 13 1 1 15.76 <0.0001 6.77 0.3424 
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Effect G.S.T random 
Dk.T Dk.G.T 

Design Design
no. (k)

No. 
of 
trials

D.f. 
for 
Dk.T Wald 

statistic
p-value Wald 

statistic
p-value 

acar:plac 1 1 1 0.02 0.8889 2.25 0.8782 
acar:SUal 2 1 1 0.01 0.9430 2.26 0.8765 
metf:plac 4 3 1 0.04 0.8379 2.22 0.8814 
metf:acar:plac 5 1 2 0.07 0.9634 2.18 0.8129 
metf:SUal 6 1 1 1.63 0.2343 0.92 0.9835 
piog:plac 8 1 1 0.43 0.5299 1.96 0.9062 
piog:metf 9 1 1 0.43 0.5318 1.94 0.9081 
piog:rosi 10 1 1 0.01 0.9065 2.27 0.8751 
rosi:plac 11 6 1 0.74 0.4112 1.87 0.9168 
rosi:metf 12 2 1 0.01 0.9276 2.25 0.8795 
rosi:SUal 13 1 1 1.79 0.2146 0.66 0.9930 
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Case-deletion plots and residual diagnostics 
 

(1) Fit model (G/S)  T and compute G.T means 

 

(2) Fit model G + T to G.T means 
 

 Drop a G.T mean and compute T means based on model G + T 

 Compute studentized residuals for G.T means from model G + T 
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Fig. 1: Case-deletion plot of treatment means. Case-deletion means based on a fit of the model G + T using design  treatment mean 
estimates obtained from fitting model (2) taking heterogeneity G.S.T as random. To obtain diagnostics for treatment means (factor T), we 
prevented an intercept from being fitted and imposed a sum-to-zero restriction on the design effects G. 
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G.S.T random Design Observation Treatment 

PRESS residual Studentized res. 
 1  1 Acar  0.0785  0.1453 
   2 plac -0.0785 -0.1453 
 2  3 acar  0.0619  0.1056 
   4 SUal -0.0619 -0.1056 
 3  5 benf   .   . 
   6 plac   .   . 
 4  7 metf -0.0781 -0.2282 
   8 plac  0.0781  0.2282 
 5  9 acar -0.1507 -0.2601 
  10 metf  0.0036  0.0075 
  11 plac  0.1193  0.2273 
 6 12 metf  0.6095  1.1614 
  13 SUal -0.6095 -1.1614 
 7 14 migl   .   . 
  15 plac   .   . 
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G.S.T random Design Observation Treatment 

PRESS residual Studentized res. 
 8 16 piog -0.2802 -0.5585 
  17 plac  0.2802  0.5585 
 9 18 metf -0.2927 -0.5779 
  19 piog  0.2927  0.5779 
10 20 piog -0.0073 -0.0141 
 21 rosi  0.0073  0.0141 
11 22 plac -0.2100 -0.6391 
 23 rosi  0.2100  0.6391 
12 24 metf -0.0616 -0.1610 
 25 rosi  0.0616  0.1610 
13 26 rosi -0.6733 -1.2693 
 27 SUal  0.6733  1.2693 
14 28 plac   .   . 
 29 sita   .   . 
15 30 plac   .   . 
 31 vild   .   . 
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Example 4:  

 Sclerotherapy data in Sharp and Thompson (2000) 

 19 trials  

 2 treatments (control and treatment) 

 Number of deaths and bleeds 
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Fig: Difference of control 
and treatment vs. mean on 
log odds scale. 
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Regress expected treatment difference baseline treatment 
 

  110211012 1 iiiii    

 

1i  = expected value of the baseline treatment in the i-th trial  

2i  = expected value of the new treatment 

                                         Schmid et al. (1998), Sharp & Thompson (2000) 

 

Ignoring heterogeneity among the trials, this type of model is commensurate 

with a multiplicative model of the form ... 
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A commensurate model (joint regression model) 
 

ikkik     , 
  

where   k  = intercept for k-th treatment 

      k  = slope for k-th treatment 

 i  = effect (latent variable) for i-th trial (fixed!)  

 Finlay-Wilkinson (1963) regression in plant breeding!  

 

Identifiability constraints  and    (Ng & Grunwald, 1997). n
n

k
k 

1
 0

1




m

i
i
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 With just two treatments, rearranging and comparing coefficients yields: 
 

   12120     

   1121    

 

 With Finlay-Wilkinson model easy to extend to more than 2 treatments! 

 

 Add random effect for heterogeneity: 
 

   ikikkik u 
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Interpretation of treatment effects more difficult 
 

  iii  212121 
 

 
 contrast depends on study
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Factor-analytic model ( i  random!) 
 

We may define the composite random term 

ikikik uf     

and set the linear predictor equal to  

ikkik f   

For identifiability, we require   1var2  i , while 1  and 2  are 

unconstrained. Thus, we have for two treatments 
 

2
2

2

1var u
T

i

i I
f
f

 







,  

where  21, T .          (Piepho, 1997, Biometrics)  
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Table: Fit of joint regression model (sclerotherapy data). 
 

                                    Fixed-effects model              Random-effects model  
 

                      Standard  Standard 
Parameter   Estimate      Error Estimate Error 
 

1  (control)     -0.927     0.261 -0.755       0.227 

2  (new treatment) -1.247    0.089 -1.305       0.145 

1        2.140     0.257 0.779       0.238 

2  -0.140     0.257 -0.106       0.186 
2
u           0.013    0.036 0.201       0.128 

0           -1.308      0.131 -1.408      0.235 

1          -1.065      0.112 -1.137      0.242 

12    -0.320     0.281 -0.550       0.286 
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Comparison with compound symmetry (CS) model (random model) 
 

121     

 
 CS model   =   two-way model with random study effects 
 
Model AIC 
 

Factor-analytic 243.15 
Compound symmetry 244.61 
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Example 5: Diabetes data 
 
 Incidence of diabetes with various antihypertensive drugs  
 Binomial response (cases/total counts) 
 6 treatments: 

ACE Inhibitor, ARB, CCB, Diuretic, Placebo, Beta-blocker 
 22 studies 
 Treatment x trial classification very incomplete 
 

 (Elliot and Meyer, 2007, Lancet)
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Factor-analytic model 
 

ikkik f     with    ikikik uf    
 

  2
6var u

T
k If  

   
with

 

 621 ,...,,  T

  and  621 ,...,, iii
T

i ffff 
  
































































22
65646362616

65
22

545352515

6454
22

4342414

635343
22

32313

62524232
22

212

6151413121
22

1

6

5

4

3

2

1

var

u

u

u

u

u

u

i

i

i

i

i

i

f
f
f
f
f
f







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Table: Parameter estimates for joint regression model (diabetes data). 
 

                                     Fixed-effects model              Random-effects model  
 

                      Standard  Standard 
Parameter   Estimate      Error Estimate Error 
 

1  (ACE inhibitor)     -2.852   0.046 -2.864  0.156 

2  (ARB)     -2.907  0.061 -2.929  0.128 

3  (CCB)    -2.793   0.034 -2.759  0.125 

4  (Diuretic)     -2.492   0.069 -2.523  0.135  

5  (Placebo)     -2.710   0.052  -2.743  0.162  

6  (Beta-blocker)      -2.603 0.038  -2.572   0.136 
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Table: Parameter estimates for joint regression model (diabetes data). 
 

                                     Fixed-effects model              Random-effects model  
 

                      Standard  Standard 
Parameter   Estimate      Error Estimate Error 
 

1  (ACE inhibitor)       1.193 0.088   0.694       0.128 

2 (ARB)      0.738  0.083   0.533     0.132 

3  (CCB)          0.820  0.062  0.555      0.105 

4 (Diuretic)      1.039  0.116    0.586       0.124 

5  (Placebo)           1.198 0.084  0.723       0.130 

6  (Beta-blocker)  1.013     0.071 0.602       0.108
   

2 u           0 - 0.0036     0.0042 
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Fig. 2: Plot of fitted 
linear predictor  ik  
versus estimated fixed 
trial effect  i  for the 
analysis of the diabetes 
example. 



5. Introducing multiplicative terms 

EFSPI, Braine-l'Alleud, 22 November 2016  Hans-Peter Piepho 92 

 

Modelling inconsistency  
 

  ijkjkkijjijk u 
  

j  = fixed main effect for the j-th trial type  

  jk  = fixed effect for the interaction jk-th trial type  treatment  

    (significant inconsistency at P = 0.0021) 

 
Modelling inconsistency by multiplicative terms 
 
     jkjk  1

 
 

ijkkijjkijk u 
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Comparing models (1) and (2) 
 
 

 0711.0,8..41.142  Pfd  
 

  8.4171 AIC  
 

  2.4182 AIC  
 
 Mild evidence that inconsistency well represented by multiplicative terms



5. Introducing multiplicative terms 

EFSPI, Braine-l'Alleud, 22 November 2016  Hans-Peter Piepho 94 

 



6. Summary 

EFSPI, Braine-l'Alleud, 22 November 2016  Hans-Peter Piepho 95 

 

Inter-trial information: some remarks 
 All models have fixed trial effect (some implicitly so) 
 between-trial information on treatment effects is not recovered 
 principle of concurrent control (Senn, 2000): 
 effect of treatments should only be judged by within-trial comparisons 
because only these are protected by randomization, provided that individual 
trials are randomized, and only these are based on the same groups of units 
(e.g., patients, plots, etc.).  
 By contrast, with a meta-analysis, there is usually no randomization 
between trials and groups of units for different trials may differ by 
important confounding factors.  

 Approaches that exploit between-trial information (van Houwelingen et al., 
2002; Dias and Ades, 2016) have been criticized by some authors. 
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 In practice, between-trial information is often low, so differences in 
analyses with fixed or random trial main effects are small, especially when 
the same set of treatments is tested in all trials.  

 In complex multiple-treatment networks, however, between-trial 
information may be non-negligible. 
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Compared:  

 Baseline contrast model (conditional)      kiibikiik U    

 Two-way model (unconditional)              ikkiik u   
 

Full equivalence: 
 Summary data 
 Individual patient data with identity link and normal errors 
 

Very similar results: 
 All other cases 
 But: Baseline contrast model is not invariant to choice of baseline! 
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 Two-way model invariant to choice of baseline 
 

 Two-way model much easier to fit using standard software 
 

 Easy to fit two-way variance-covariance models for heterogeneity 
 

 Joint regression model and factor-analytic models extend regression on 

baseline treatment when there are more than two treatments  

 easy to implement with two-way model 

 

Lesson for multi-environment variety trials: 
 

 Consider inconsistency of trials 
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                    Thanks! 
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